Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinases and

As examples of applications, we present the overall accuracy of predicted ionization constants for about 50 groups in 4 proteins, changes in the average charge of bovine pancreatic trypsin inhibitor at pH 7 along a molecular dynamics trajectory, and finally, we discuss some preliminary results obtained for protein kinases and protein phosphatases. [Pg.176]

The procedure is computationally efficient. For example, for the catalytic subunit of the mammalian cAMP-dependent protein kinase and its inhibitor, with 370 residues and 131 titratable groups, an entire calculation requires 10 hours on an SGI 02 workstation with a 175 MHz MIPS RIOOOO processor. The bulk of the computer time is spent on the FDPB calculations. The speed of the procedure is important, because it makes it possible to collect results on many systems and with many different sets of parameters in a reasonable amount of time. Thus, improvements to the method can be made based on a broad sampling of systems. [Pg.188]

The last part of this account will be devoted to protein kinases and protein phosphatases and some recent results we have obtained for them. Protein kinases and phosphatases are signaling biomolecules that control the level of phosphorylation and dephosphorylation of tyrosine, serine or threonine residues in other proteins, and by this means regulate a variety of fundamental cellular processes including cell growth and proliferation, cell cycle and cytoskeletal integrity. [Pg.190]

Karlsson, R., Zheng, J., Zheng, N.-H., Taylor, S. S., Sowadski, J. M. Structure of the mamalian catalytic subunit of cAMP-dependent protein kinase and an inhibitor peptide displays an open conformation. Acta Cryst. D 49 (1993) 381-388. [Pg.196]

Enzymes, measured in clinical laboratories, for which kits are available include y-glutamyl transferase (GGT), alanine transferase [9000-86-6] (ALT), aldolase, a-amylase [9000-90-2] aspartate aminotransferase [9000-97-9], creatine kinase and its isoenzymes, galactose-l-phosphate uridyl transferase, Hpase, malate dehydrogenase [9001 -64-3], 5 -nucleotidase, phosphohexose isomerase, and pymvate kinase [9001-59-6]. One example is the measurement of aspartate aminotransferase, where the reaction is followed by monitoring the loss of NADH ... [Pg.40]

Showdomycin. Showdomycin (2-p-D-ribofuranosyhnaleimide) (7) is a maleimide C-nucleoside antibiotic synthesi2ed by S. showdoensis-, isoshowdomycin (8) and maleimycin (9) have also been isolated (1—6). Showdomycin is not phosphorylated by nucleoside kinase and is not a substrate for nucleoside phosphorylase. Once (7) enters the cell, it blocks the uptake of glucose and other nutrients. [Pg.118]

Ara-A is phosphorylated in mammalian cells to ara-AMP by adenosine kinase and deoxycytidine kinase. Further phosphorylation to the di- and triphosphates, ara-ADP and ara-ATP, also occurs. In HSV-1 infected cells, ara-A also is converted to ara-ATP. Levels of ara-ATP correlate directly with HSV rephcation. It has recently been suggested that ara-A also may exhibit an antiviral effect against adenovims by inhibiting polyadenylation of viral messenger RNA (mRNA), which may then inhibit the proper transport of the viral mRNA from the cell nucleus. [Pg.307]

In the presence of calcium, the primary contractile protein, myosin, is phosphorylated by the myosin light-chain kinase initiating the subsequent actin-activation of the myosin adenosine triphosphate activity and resulting in muscle contraction. Removal of calcium inactivates the kinase and allows the myosin light chain to dephosphorylate myosin which results in muscle relaxation. Therefore the general biochemical mechanism for the muscle contractile process is dependent on the avaUabUity of a sufficient intraceUular calcium concentration. [Pg.125]

The polypeptide chain of Src tyrosine kinase, and related family members, comprises an N-terminal "unique" region, which directs membrane association and other as yet unknown functions, followed by a SH3 domain, a SH2 domain, and the two lobes of the protein kinase. Members of this family can be phosphorylated at two important tyrosine residues—one in the "activation loop" of the kinase domain (Tyr 419 in c-Src), the other in a short... [Pg.275]

FIGURE 15.2 Enzymes regulated by covalent modification are called interconvertible enzymes. The enzymes protein kinase and protein phosphatase, in the example shown here) catalyzing the conversion of the interconvertible enzyme between its two forms are called converter enzymes. In this example, the free enzyme form is catalytically active, whereas the phosphoryl-enzyme form represents an inactive state. The —OH on the interconvertible enzyme represents an —OH group on a specific amino acid side chain in the protein (for example, a particular Ser residue) capable of accepting the phosphoryl group. [Pg.463]

Mitochondria are surrounded by a simple outer membrane and a more complex inner membrane (Figure 21.1). The space between the inner and outer membranes is referred to as the intermembrane space. Several enzymes that utilize ATP (such as creatine kinase and adenylate kinase) are found in the intermembrane space. The smooth outer membrane is about 30 to 40% lipid and 60 to 70% protein, and has a relatively high concentration of phos-phatidylinositol. The outer membrane contains significant amounts of porin —a transmembrane protein, rich in /3-sheets, that forms large channels across the membrane, permitting free diffusion of molecules with molecular weights of about 10,000 or less. Apparently, the outer membrane functions mainly to... [Pg.674]

As discussed in Section 22.7, illumination of chloroplasts leads to light-driven pumping of protons into the thylakoid lumen, which causes pH changes in both the stroma and the thylakoid lumen (Figure 22.27). The stromal pH rises, typically to pH 8. Because rubisco and rubisco activase are more active at pH 8, COg fixation is activated as stromal pH rises. Fructose-1,6-bisphosphatase, ribulose-5-phosphate kinase, and glyceraldehyde-3-phosphate dehydrogenase all have alkaline pH optima. Thus, their activities increase as a result of the light-induced pH increase in the stroma. [Pg.736]

Stimulation of glycogen breakdown involves consumption of molecules of ATP at three different steps in the hormone-sensitive adenylyl cyclase cascade (Figure 15.19). Note that the cascade mechanism is a means of chemical amplification, because the binding of just a few molecules of epinephrine or glucagon results in the synthesis of many molecules of cyclic / MP, which, through the action of c/ MP-dependent protein kinase, can activate many more molecules of phosphorylase kinase and even more molecules of phosphorylase. For example, an extracellular level of 10 to 10 M epinephrine prompts the for-... [Pg.761]

Like all anhydrides (Section 21.5), the mixed carboxylic-phosphoric anhydride is a reactive substrate in nucleophilic acyl (or phosphoryl) substitution reactions. Reaction of 1,3-bisphosphoglycerate with ADR occurs in step 7 by substitution on phosphorus, resulting in transfer of a phosphate group to ADP and giving ATP plus 3-phosphoglycerate. The process is catalyzed by phospho-gjvcerate kinase and requires Mg2+ as cofactor. Together, steps 6 and 7 accomplish the oxidation of an aldehyde to a carboxylic acid. [Pg.1148]

Transfer of the phosphoryl group to ADP in step 10 then generates ATP and gives enolpyruvate, which undergoes tautomerization to pyruvate. The reaction is catalyzed by pyruvate kinase and requires that a molecule of fructose 1,6-bis-phosphate also be present, as well as 2 equivalents of Mg2+. One Mg2+ ion coordinates to ADP, and the other increases the acidity of a water molecule necessary for protonation of the enolate ion. [Pg.1150]

Let us consider Figure 5.3 again. Both pyruvate kinase and dtrate synthase (enzymes III and V) are inhibited by elevated ATP concentrations. During citric acid production ATP concentrations are likely to arise (ATP produced in glycolysis) and either of these enzymes could, if inhibited, slow down the process. In fact all of the evidence suggests that both enzymes are modified or controlled in some way such that they are insensitive to other cellular metabolites during citric add production. [Pg.128]

In contrast, UCN-01, a staurosporine derivative, acts as a potent inhibitor of the Chkl kinase and efficiently abrogates the G2 checkpoint upon DNA damage. Die forced entry into mitosis in the presence of DNA damage results in a mitotic form of apoptosis. Several clinical trials are currently exploring a combined treatment with UCN-01 and various DNA damaging diugs. In the same vein, inhibitors of Chk2 are developed and tested in clinical trials. [Pg.345]

Motor proteins move along MTs in an ATP-dependent manner. Members of the superfamily of kinesin motors move only to the plus ends and dynein motors only to the minus ends. The respective motor domains are linked via adaptor proteins to their cargoes. The binding activity of the motors to MTs is regulated by kinases and phosphatases. When motors are immobilized at their cargo-binding area, they can move MTs. [Pg.415]

ET-1 also stimulates anti-apoptotic signal cascades in fibroblasts, vascular smooth muscles and endothelial cells (via phosphatidylinositol-3-kinase and Akt/pro-tein kinase B). In prostate and ovarian cancer, upregulation of endothelin synthesis and ETA receptors has been associated with a progression of the disease. The inhibiton of ETA receptors results in a reduced tumour growth. In malignant melanoma, ETB receptors are associated with tumour progression. Endothelins can also stimulate apoptosis in stretch-activated vessels via the ETB receptor, which contrasts the above-mentioned effects. The molecular basis for these differential anti- and pro-apoptotic reactions mediated by endothelins remains elusive. [Pg.474]

Furthermore, PKCe is required for nerve growth factor-induced activation of mitogen-activated protein kinases and neurite outgrowth by ethanol. It is also required for ethanol-induced increases in N-type voltage-gated calcium channels in PC 12 neural cells. [Pg.485]

Sirolimus (SRL), also termed rapamycin is a macrolide lactone isolated from the ascomycete species Stre-ptomyces hygroscopicus. After binding to its cytosolic receptor FKBP-12 the resulting complex inhibits the multifunctional serine-threonine kinase mTOR (mammalian target of rapamycin). Inhibition of mTOR prevents activation of the p70S6 kinase and successive... [Pg.619]

Decrease of cAMP, the second messenger of glucagon. Induction of pyruvate kinase and glycerinaldehyde dehydrogenase... [Pg.634]

Besides the cytokine receptors that lack intrinsic kinase activity but have associated JAK kinases, STAT proteins can be activated by a variety of G-protein coupled receptors and growth factor receptors with intrinsic tyrosine kinase activity (for example EGF, PDGF, CSF-1, and angiotensin receptor). Increasing evidence suggests a critical role for STAT family members in oncogenesis and aberrant cell proliferation. Constitutively activated STATs have been found in many transformed cell lines and a wide variety of human tumor entities. Numerous non-receptor tyrosine kinases and viral oncoproteins, such as v-Src, v-Abl, v-Sis, and v-Eyk, have been identified to induce DNA-binding activity of STAT proteins. [Pg.669]


See other pages where Kinases and is mentioned: [Pg.177]    [Pg.190]    [Pg.516]    [Pg.309]    [Pg.108]    [Pg.278]    [Pg.95]    [Pg.183]    [Pg.636]    [Pg.667]    [Pg.733]    [Pg.751]    [Pg.17]    [Pg.17]    [Pg.18]    [Pg.47]    [Pg.89]    [Pg.274]    [Pg.296]    [Pg.302]    [Pg.341]    [Pg.344]    [Pg.345]    [Pg.422]    [Pg.570]    [Pg.585]    [Pg.663]    [Pg.667]   
See also in sourсe #XX -- [ Pg.96 , Pg.97 ]

See also in sourсe #XX -- [ Pg.90 , Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 ]




SEARCH



A-and C-kinases

ACTH and protein kinase

Adenosine kinase and

Adenosine phosphosulfate kinase and

Adenylate kinase and

And protein kinase C

Choline kinase and

Creatine kinase assay and specific activity, VIII

Deoxycytidylate kinase and

Dependence and protein kinase

Dephosphophosphorylase kinase and

Diacylglycerol and protein kinase

Ephrin Ligands and Eph Kinases

Extracellular signal-regulated kinase 1 and

General Classification and Function of Protein Kinases

Glycerate kinase and

Homoserine kinase and

Janus kinase-signal transducer and activator

Janus kinase-signal transducers and activators of transcription

Janus kinase-signal transducers and activators of transcription JAK-STAT)

Kinase Growth Factor VEGFR-2 and FGFR-1 Inhibitors

Kinase Isoenzymes and Isoforms

Kinase Mutations and Resistance in Cancer

Kinase and phosphatase enzymes

Mevalonic kinase and

PI3K and Structurally Related Kinases

Phosphatidyl Inositol Phosphate and PI3-Kinase

Phosphorylase b kinase and

Phosphorylase dephosphophosphorylase kinase and

Pyridoxal Kinase, Pyridoxamine Oxidase, and

Pyridoxal kinase and

Pyruvate kinase and

Quantification of Free ADP and Creatine Kinase Equilibrium Constant

RAS and the MAP Kinase Signaling Pathway

Receptor Activation, Tyrosine Kinase Activity, and in Cultured Vascular Smooth Muscle Cells

Resistance mutations to imatinib and successor compounds (Kit kinase)

SIFt and the Analysis of Protein Kinase - Inhibitor Complexes

Stress Activated and Extra-cellular Kinases

Structural Aspects of Kinases and Their Inhibitors

Structure and Activation of Protein Kinase

Structure and Activation of the Tyrosine Kinase Domain

Structure and Autoregulation of CaM Kinase II

Structure and General Function of Nonreceptor Tyrosine Kinases

Structure and Substrate Specificity of Protein Kinase

Systems Biology and Kinase Signaling

The Janus Family Tyrosine Kinases-Signal Transducers and Activators of Transcription Signaling Pathway

The Learning and Evolution of Medicinal Chemistry against Kinase Targets

The Mechanisms and Kinetics of Protein Kinase Inhibitors

Thymidine Kinase Substrates and Inhibitors

Tyrosine protein kinase , and

© 2024 chempedia.info