Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Space, intermembrane

Mitochondria are surrounded by a simple outer membrane and a more complex inner membrane (Figure 21.1). The space between the inner and outer membranes is referred to as the intermembrane space. Several enzymes that utilize ATP (such as creatine kinase and adenylate kinase) are found in the intermembrane space. The smooth outer membrane is about 30 to 40% lipid and 60 to 70% protein, and has a relatively high concentration of phos-phatidylinositol. The outer membrane contains significant amounts of porin —a transmembrane protein, rich in /3-sheets, that forms large channels across the membrane, permitting free diffusion of molecules with molecular weights of about 10,000 or less. Apparently, the outer membrane functions mainly to... [Pg.674]

FIGURE 21.11 The structure of UQ-cyt c reductase, also known as the cytochrome hci complex. The alpha helices of cytochrome b (pale green) define the transmembrane domain of the protein. The bottom of the structure as shown extends approximately 75 A into the mitochondrial matrix, and die top of the structure as shown extends about 38 A into the intermembrane space. (Photograph kindly provided by Di Xia and Johann Deismhofer [From Xia, D., Yn, C.-A., Kim, H., Xia,J-Z., Kachnrin, A. M., Zhang, L., Yn,... [Pg.686]

Cytochrome c, like UQ is a mobile electron carrier. It associates loosely with the inner mitochondrial membrane (in the intermembrane space on the cytosolic side of the inner membrane) to acquire electrons from the Fe-S-cyt C aggregate of Complex 111, and then it migrates along the membrane surface in the reduced state, carrying electrons to cytochrome c oxidase, the fourth complex of the electron transport chain. [Pg.688]

BH3 domain) of the BH3-only proteins binds to other Bcl-2 family members thereby influencing their conformation. This interaction facilitates the release of cytochrome C and other mitochondrial proteins from the intermembrane space of mitochondria. Despite much effort the exact biochemical mechanism which governs this release is not yet fully understood. The release of cytochrome C facilitates the formation of the apoptosome, the second platform for apoptosis initiation besides the DISC. At the apoptosome which is also a multi-protein complex the initiator caspase-9 is activated. At this point the two pathways converge. [Pg.206]

The mitochondrion has an outer and an inner membrane (Figure 1). The outer membrane contains pores formed from a protein, porin, which allow exchange of molecules with molecular weights up to about 2,000 between the cytosol and the intermembrane space. The inner membrane is extensively invaginated to increase its surface area. It has a different lipid composition from the outer membrane and is rich in the acidic phospholipid cardiolipin (diphosphatidyl-glycerol) which is only found in animal cells in mitochondria. Cardiolipin confers good electrical insulating properties on the inner membrane which is impermeable... [Pg.108]

Complex IV consists of 13 peptides, two heme A groups (cytochrome a and a3> and two or three Cu atoms (Table 2). It spans the inner membrane and protrudes into the intermembrane space. Complex IV catalyzes the reduction of dioxygen by oxidized cytochrome c, and four protons derived from the matrix are consumed in the reaction. [Pg.128]

In resting muscle the high concentration of ADP does not decrease the proton gradient effectively and the high membrane potential slows electron transport. ADP, formed when ATP is hydrolyzed by myosin ATPase during contraction, may stimulate electron transport. However, the concentration of ATP (largely as its Mg salt) is buffered by its readily reversible formation from creatine phosphate catalyzed in the intermembrane space, and in other cell compartments, by the various isoenzymes of creatine kinase (reviewed by Walliman et al., 1992). [Pg.136]

The nuclear-encoded proteins are inserted into both inner and outer mitochondrial membranes, the intermembrane space, and the matrix and there are several different mechanisms involved. As mentioned above there is no apparent requirement for a presequence on proteins which insert specifically into the mitochondrial outer membrane. For proteins destined for the inner mitochondrial membrane, a stop-transfer mechanism is proposed. Thus some information in the peptide must stop the complete transfer of the protein into the mitochondrial matrix, enabling the protein to remain in the inner mitochondrial membrane. For some proteins in the intermembrane space (for example the Rieske iron-sulphur protein associated with the outer face of complex III), a particularly complicated import pathway... [Pg.140]

Mitochondria have an outer membrane that is permeable to most metabohtes, an inner membrane that is selectively permeable, and a matrix within (Figure 12-1). The outer membrane is characterized by the presence of various enzymes, including acyl-CoA synthetase and glycerolphosphate acyltransferase. Adenylyl kinase and creatine kinase are found in the intermembrane space. The phospholipid cardiolipin is concentrated in the inner membrane together with the enzymes of the respiratory chain. [Pg.92]

The details of how preproteins are translocated have not been fully elucidated. It is possible that the electric potential associated with the inner mitochondrial membrane causes a conformational change in the unfolded preprotein being translocated and that this helps to puU it across. Furthermore, the fact that the matrix is more negative than the intermembrane space may attract the positively charged amino terminal of the preprotein... [Pg.499]

The above describes the major pathway of proteins destined for the mitochondrial matrix. However, certain proteins insert into the outer mitochoiidrial membrane facilitated by the TOM complex. Others stop in the intermembrane space, and some insert into the inner membrane. Yet others proceed into the matrix and then return to the inner membrane or intermembrane space. A number of proteins contain two signaling sequences—one to enter the mitochondrial matrix and the other to mediate subsequent relocation (eg, into the inner membrane). Certain mitochondrial proteins do not contain presequences (eg, cytochrome Cy which locates in the inter membrane space), and others contain internal presequences. Overall, proteins employ a variety of mechanisms and routes to attain their final destinations in mitochondria. [Pg.501]

Adenylate kinase (AK) is a ubiquitous monomeric enzyme that catalyzes the interconversion of AMP, ADP, and ATP. This interconversion of the adenine nucleotides seems to be of particular importance in regulating the equilibrium of adenine nucleotides in tissues, especially in red blood cells. AK has three isozymes (AK 1,2, and 3). AK 1 is present in the cytosol of skeletal muscle, brain, and red blood cells, and AK 2 is found in the intermembrane space of mitochondria of liver, kidney, spleen, and heart. AK 3, also called GTP AMP phosphotransferase, exists in the mitochondrial matrix of liver and heart. [Pg.13]

Figure 2.8 The structure of the dimeric cytochrome bcomplex of the respiratory chain, (a) The cave for chemistry constituted by the hollow between the two monomers (the essential dimer ) in a cartoon representation. Reprinted with permission from Smith, 1998. Copyright (1998), American Association for the Advancement of Science, (b) The structure viewed perpendicular to the twofold axis and parallel to the membrane. All of the eleven subunits are completely traced and their sequences assigned. The top of the molecule extends 3.8 nm into the intermembrane space, the middle spans the membrane (4.2 nm), and the bottom extends some 7.5 nm into the matrix. Reprinted with permission from Iwata et al., 1998. Copyright (1998) American Association for the Advancement of Science. Figure 2.8 The structure of the dimeric cytochrome bcomplex of the respiratory chain, (a) The cave for chemistry constituted by the hollow between the two monomers (the essential dimer ) in a cartoon representation. Reprinted with permission from Smith, 1998. Copyright (1998), American Association for the Advancement of Science, (b) The structure viewed perpendicular to the twofold axis and parallel to the membrane. All of the eleven subunits are completely traced and their sequences assigned. The top of the molecule extends 3.8 nm into the intermembrane space, the middle spans the membrane (4.2 nm), and the bottom extends some 7.5 nm into the matrix. Reprinted with permission from Iwata et al., 1998. Copyright (1998) American Association for the Advancement of Science.
Figure 12.2 Copper chaperone function, (a) Copper homeostasis in Enterococcus hirae is affected by the proteins encoded by the cop operon. CopA, Cu1+-import ATPase CopB, Cu1+-export ATPase CopY, Cu1+-responsive repressor copZ, chaperone for Cu1+ delivery to CopY. (b) The CTR family of proteins transports copper into yeast cells. Atxlp delivers copper to the CPx-type ATPases located in the post Golgi apparatus for the maturation of Fet3p. (c) Coxl7p delivers copper to the mitochondrial intermembrane space for incorporation into cytochrome c oxidase (CCO). (d) hCTR, a human homologue of CTR, mediates copper-ion uptake into human cells. CCS delivers copper to cytoplasmic Cu/Zn superoxide dismutase (SOD1). Abbreviations IMM, inner mitochondrial membrane OMM, outer mitochondrial membrane PM, plasma membrane PGV, post Golgi vessel. Reprinted from Harrison et al., 2000. Copyright (2000), with permission from Elsevier Science. Figure 12.2 Copper chaperone function, (a) Copper homeostasis in Enterococcus hirae is affected by the proteins encoded by the cop operon. CopA, Cu1+-import ATPase CopB, Cu1+-export ATPase CopY, Cu1+-responsive repressor copZ, chaperone for Cu1+ delivery to CopY. (b) The CTR family of proteins transports copper into yeast cells. Atxlp delivers copper to the CPx-type ATPases located in the post Golgi apparatus for the maturation of Fet3p. (c) Coxl7p delivers copper to the mitochondrial intermembrane space for incorporation into cytochrome c oxidase (CCO). (d) hCTR, a human homologue of CTR, mediates copper-ion uptake into human cells. CCS delivers copper to cytoplasmic Cu/Zn superoxide dismutase (SOD1). Abbreviations IMM, inner mitochondrial membrane OMM, outer mitochondrial membrane PM, plasma membrane PGV, post Golgi vessel. Reprinted from Harrison et al., 2000. Copyright (2000), with permission from Elsevier Science.
Prokaryote Simple single compartment, the cytoplasm, with at most two surrounding membranes and an intermembrane space, the periplasm. Now and then species may have a vesicle. Small cells... [Pg.436]

FIGURE 31-7 Mitochondrial carriers. Ions and small molecules enter the intermembrane space, since the outer mitochondrial membrane is not a significant permeability barrier. However, the inner mitochondrial membrane is impermeable to ions except those for which there are specific carriers. Most of the carriers are reversible, as indicated by two-headed arrows. Compounds transported in one direction are indicated in red. The ATP/ADP translocase and the aspartate-glutamate carrier are both electrophoretic their transport is driven in the direction of the mitochondrial membrane potential, as indicated by red arrows. Glutamine is carried into the matrix by an electroneutral carrier. The unimpaired functioning of mitochondrial carriers is essential for normal metabolism. (Adapted with permission from reference [70].)... [Pg.547]

Mitochondria (45-56) are organelles possessing a double membrane, the inner of which is invaginated as cristae. An intermembrane space exists between the inner and outer membranes. The inner membrane consists of an unusually high amount of protein and possesses spherically shaped particles approx 9 nm in diameter. These particles appear to be equivalent to F0, Fb and adenosine triphosphatase. In contrast to the inner membrane, the outer membrane is smooth and appears to be connected to the smooth er. This membrane is permeable to all molecules of 10,000 Dalton or less. A mitochondrial matrix is enclosed by the inner membrane and consists of a ground substance of particles, nucleoids, ribosomes, and electron-transparent regions containing DNA. [Pg.22]

NADH-coenzyme Q (CoQ) oxidoreductase, transfers electrons stepwise from NADH, through a flavoprotein (containing FMN as cofactor) to a series of iron-sulfur clusters (which will be discussed in Chapter 13) and ultimately to CoQ, a lipid-soluble quinone, which transfers its electrons to Complex III. A If, for the couple NADH/CoQ is 0.36 V, corresponding to a AG° of —69.5 kJ/mol and in the process of electron transfer, protons are exported into the intermembrane space (between the mitochondrial inner and outer membranes). [Pg.99]

We now turn our attention to how the gradient of protons pumped by Complexes I, III and IV across the inner mitochondrial membrane into the intermembrane space, together with the associated membrane potential, is used to turn the molecular rotor that ensures... [Pg.99]

The disposition of the different metal centres of bovine heart CcOx is represented in Figure 14.9. The dimetallic CuA site receives electrons directly from cytochrome c, and is located in a globular domain of subunit II, which protrudes into the intermembrane space (the periplasmic space in bacteria). This centre, which was widely believed to be mononuclear is a dicopper site (Figure 14.10) in which the coppers are bridged by two cysteine sul-furs each copper in addition has two other protein ligands. In the one electron-reduced form,... [Pg.249]


See other pages where Space, intermembrane is mentioned: [Pg.674]    [Pg.675]    [Pg.687]    [Pg.691]    [Pg.693]    [Pg.711]    [Pg.334]    [Pg.126]    [Pg.127]    [Pg.136]    [Pg.140]    [Pg.141]    [Pg.100]    [Pg.641]    [Pg.643]    [Pg.646]    [Pg.501]    [Pg.76]    [Pg.326]    [Pg.349]    [Pg.750]    [Pg.41]    [Pg.99]    [Pg.100]    [Pg.100]    [Pg.104]    [Pg.140]    [Pg.225]    [Pg.226]    [Pg.250]   
See also in sourсe #XX -- [ Pg.140 ]

See also in sourсe #XX -- [ Pg.210 ]

See also in sourсe #XX -- [ Pg.307 , Pg.307 ]

See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Adenylate kinase in intermembrane space

Apoptosis mitochondrial intermembrane space

Intermembrane space of mitochondria

Intermembrane space, mitochondrial

Intermembrane space, proteins

Intermembrane spacing

Mitochondria intermembrane space

Mitochondrial targeting signals intermembrane space proteins

Space, intermembrane matrix

© 2024 chempedia.info