Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Different steps

The addition polymerization of a vinyl monomer CH2=CHX involves three distinctly different steps. First, the reactive center must be initiated by a suitable reaction to produce a free radical or an anion or cation reaction site. Next, this reactive entity adds consecutive monomer units to propagate the polymer chain. Finally, the active site is capped off, terminating the polymer formation. If one assumes that the polymer produced is truly a high molecular weight substance, the lack of uniformity at the two ends of the chain—arising in one case from the initiation, and in the other from the termination-can be neglected. Accordingly, the overall reaction can be written... [Pg.14]

It is the magnitude of the various k values in Eqs. (7.1)-(7.4) that describes the intrinsic kinetic differences between the various modes of addition, and the k s plus the concentrations of the different species determine the rates at which the four kinds of additions occur. It is the proportion of different steps which determines the composition of the copolymer produced. [Pg.426]

Pyrazolines can be prepared from the reaction between a hydrazine and two carbonyl compounds, one of them having at least one hydrogen atom a to the carbonyl group. Formally, these reactions correspond to the [NN + C + CC] class. However, if one considers the different steps in the ring formation, they more properly belong to the [CNN + CC] (Section 4.04.3.1.2(ii)), the [CCNN + C] (Section 4.04.3.1.2(i)), or the formation of one bond (Section 4.04.3.1.1) classes. [Pg.284]

Qualitative and, hopefully, quantitative estimates of how the process result will be measured must be made in advance. The evaluations must allow one to estabhsh the importance of the different steps in a process, such as gas-liquid mass transfer, chemical reac tion rate, or heat transfer. [Pg.1625]

Example 2 Yield from Evaporative Cooling Starting with 1000 lb of water in a solution at H on the solubility diagram in Fig. 18-57, calculate the yield on evaporative cooling and concentrate the solution back to point H so the cycle can be repeated, indicating the amount of NaCl precipitated and the evaporation and dilution required at the different steps in the process. [Pg.1655]

Process equipment function changes with different steps in process sequence (e.g., same vessel used as feed tank, reactor, crystallizer pump... [Pg.113]

Process equipment function changes with different steps in process sequence (e.g., same vessel used as feed tank, reactor, crystallizer pump used to pump in/out). Instrumentation and controls not kept in phase with the current process step (e.g., control set points, interlocks etc.). [Pg.119]

The data show that SSIMS can be used as a tool for characterizing the different steps in the production of biosensors, or even for sequencing. Similarly, SSIMS can be used to solve a variety of problems in bioanalytical chemistry, e. g. screening of combinatorial libraries, characterizing Langmuir-Blodgett layers, etc. [Pg.101]

Not all reactions can be fitted by the Hammett equations or the multiparameter variants. There can be several reasons for this. The most common is that the mechanism of the reaction depends on the nature of the substituent. In a multistep reaction, for example, one step may be rate-determining in the case of electron-withdrawing substituents, but a different step may become rate-limiting when the substituent is electron-releasing. The rate of semicarbazone formation of benzaldehydes, for example, shows a nonlinear Hammett... [Pg.213]

The different steps of the flow and batch processes of the industrial production. [Pg.604]

The different steps of the flow and batch processes of the industrial production must be roughly described early in the design process. A more detailed description may be needed in regions w here heat and contaminants are released. Production design engineers are likely to provide the information needed. [Pg.604]

Why do metabolic pathways have so many different steps ... [Pg.608]

Stimulation of glycogen breakdown involves consumption of molecules of ATP at three different steps in the hormone-sensitive adenylyl cyclase cascade (Figure 15.19). Note that the cascade mechanism is a means of chemical amplification, because the binding of just a few molecules of epinephrine or glucagon results in the synthesis of many molecules of cyclic / MP, which, through the action of c/ MP-dependent protein kinase, can activate many more molecules of phosphorylase kinase and even more molecules of phosphorylase. For example, an extracellular level of 10 to 10 M epinephrine prompts the for-... [Pg.761]

For each reaction, plot energy (vertical axis) vs. the number of the structure in the overall sequence (horizontal axis). Do reactions that share the same mechanistic label also share similar reaction energy diagrams How many barriers separate the reactants and products in an Sn2 reaction In an SnI reaction Based on your observations, draw a step-by-step mechanism for each reaction using curved arrows () to show electron movements. The drawing for each step should show the reactants and products for that step and curved arrows needed for that step only. Do not draw transition states, and do not combine arrows for different steps. [Pg.63]

Figure 13.7 Selectivity effected by employing different step gradients in the coupled-column RPLC analysis of a surface water containing 0.40 p-g 1 bentazone, by using direct sample injection (2.00 ml). Clean-up volumes, (a), (c) and (d) 4.65 ml of M-1, and (b) 3.75 ml of M-1 transfer volumes, (a), (c) and (d), 0.50 ml of M-1, and (b), 0.40 ml of M-1. The displayed cliromatograms start after clean-up on the first column. Reprinted from Journal of Chromatography, A 644, E. A. Hogendoom et al, Coupled-column reversed-phase liquid chromatography-UV analyser for the determination of polar pesticides in water , pp. 307-314, copyright 1993, with permission from Elsevier Science. Figure 13.7 Selectivity effected by employing different step gradients in the coupled-column RPLC analysis of a surface water containing 0.40 p-g 1 bentazone, by using direct sample injection (2.00 ml). Clean-up volumes, (a), (c) and (d) 4.65 ml of M-1, and (b) 3.75 ml of M-1 transfer volumes, (a), (c) and (d), 0.50 ml of M-1, and (b), 0.40 ml of M-1. The displayed cliromatograms start after clean-up on the first column. Reprinted from Journal of Chromatography, A 644, E. A. Hogendoom et al, Coupled-column reversed-phase liquid chromatography-UV analyser for the determination of polar pesticides in water , pp. 307-314, copyright 1993, with permission from Elsevier Science.
The alkene and diene polymers discussed in Sections 7.10 and 14.6 are called chain-growth polymers because they are produced by chain reactions. An initiator adds to a C=C bond to give a reactive intermediate, which adds to a second alkene molecule to produce a new1 intermediate, which adds to a third molecule, and so on. By contrast, polyamides and polyesters are called step-growth polymers because each bond in the polymer is formed independently of the others. A large number of different step-growth polymers have been made some of the more important ones are shown in Table 21.2. [Pg.818]

The second method of tantalum and niobium production is related historically to Marignac s process of tantalum and niobium separation, in the form of complex fluoride compounds, and is based on the fluorination of raw material. The modem production process consists of slightly different steps, as described below. [Pg.6]

The known beneficial effects of retinoids on malignancies are assumed to relate to retinoid receptor-mediated antipromoting and anti-initiating effects. The latter appeals to be influenced by interference of several xenobiotics with different steps of the retinoid metabolism in the target cell. Of the carotenoids, (3-carotene is the most potent retinol precursor, yet being... [Pg.1072]

The error in Runge-Kutta calculations depends on h, the step size. In systems of differential equations that are said to be stiff, the value of h must be quite small to attain acceptable accuracy. This slows the calculation intolerably. Stiffness in a set of differential equations arises in general when the time constants vary widely in magnitude for different steps. The complications of stiffness for problems in chemical kinetics were first recognized by Curtiss and Hirschfelder.27... [Pg.115]

In the first step an S03 molecule is inserted into the ester binding and a mixed anhydride of the sulfuric acid (I) is formed. The anhydride is in a very fast equilibrium with its cyclic enol form (II), whose double bonding is attacked by a second molecule of sulfur trioxide in a fast electrophilic addition (III and IV). In the second slower step, the a-sulfonated anhydride is rearranged into the ester sulfonate and releases one molecule of S03, which in turn sulfonates a new molecule of the fatty acid ester. The real sulfonation agent of the acid ester is not the sulfur trioxide but the initially formed sulfonated anhydride. In their detailed analysis of the different steps and intermediates of the sulfonation reaction, Schmid et al. showed that the mechanism presented by Smith and Stirton [31] is the correct one. [Pg.467]

In both intermediate and maximum rates of respiration, control is distributed between several different steps, including the activity of the adenine nucleotide translocator (Groen et al., 1983). It is now recognized that the idea of a simple rate-limiting step for a metabolic pathway is simplistic and that control is shared by all steps although to different extents (Kacserand Bums, 1978 Fell, 1992). Each step in a pathway has a flux control coefficient (FCC) defined as ... [Pg.137]

In more detail, the interaction energy between donor and acceptor is determined by the ionisation potential of the donor and the electron affinity of the acceptor. The interaction energy increases with lowering of the former and raising of the latter. In the Mulliken picture (Scheme 2) it refers to a raising of the HOMO (highest occupied molecular orbital) and lowering of the LUMO (lowest unoccupied molecular orbital). Alternatively to this picture donor-acceptor formation can be viewed in a Born-Haber cycle, within two different steps (Scheme 3). [Pg.77]

Elastin is a heavily crosslinked biopolymer that is formed in a process named elastogenesis. In this section, the role of elastin and the different steps of elastin production will be described, starting with transcription of the genetic code and processing of the primary transcript, followed by translation into the elastin precursor protein and its transport to the extracellular matrix. Finally, the crosslinking and fiber formation, which result in the transition from tropoelastin to elastin, are described. [Pg.73]

It is important to realize that the assumption of a rate-determining step limits the scope of our description. As with the steady state approximation, it is not possible to describe transients in the quasi-equilibrium model. In addition, the rate-determining step in the mechanism might shift to a different step if the reaction conditions change, e.g. if the partial pressure of a gas changes markedly. For a surface science study of the reaction A -i- B in an ultrahigh vacuum chamber with a single crystal as the catalyst, the partial pressures of A and B may be so small that the rates of adsorption become smaller than the rate of the surface reaction. [Pg.61]


See other pages where Different steps is mentioned: [Pg.153]    [Pg.150]    [Pg.304]    [Pg.373]    [Pg.270]    [Pg.1498]    [Pg.2055]    [Pg.101]    [Pg.191]    [Pg.1211]    [Pg.13]    [Pg.13]    [Pg.122]    [Pg.888]    [Pg.888]    [Pg.141]    [Pg.204]    [Pg.131]    [Pg.302]    [Pg.489]    [Pg.313]    [Pg.412]    [Pg.404]    [Pg.611]    [Pg.548]    [Pg.434]    [Pg.436]   


SEARCH



© 2024 chempedia.info