Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic subunit

We have previously calculated conformational free energy differences for a well-suited model system, the catalytic subunit of cAMP-dependent protein kinase (cAPK), which is the best characterized member of the protein kinase family. It has been crystallized in three different conformations and our main focus was on how ligand binding shifts the equilibrium among these ([Helms and McCammon 1997]). As an example using state-of-the-art computational techniques, we summarize the main conclusions of this study and discuss a variety of methods that may be used to extend this study into the dynamic regime of protein domain motion. [Pg.68]

The catalytic subunit of cAPK contains two domains connected by a peptide linker. ATP binds in a deep cleft between the two domains. Presently, crystal structures showed cAPK in three different conformations, (1) in a closed conformation in the ternary complex with ATP or other tight-binding ligands and a peptide inhibitor PKI(5-24), (2) in an intermediate conformation in the binary complex with adenosine, and (3) in an open conformation in the binary complex of mammalian cAPK with PKI(5-24). Fig.l shows a superposition of the three protein kinase configurations to visualize the type of conformational movement. [Pg.68]

The procedure is computationally efficient. For example, for the catalytic subunit of the mammalian cAMP-dependent protein kinase and its inhibitor, with 370 residues and 131 titratable groups, an entire calculation requires 10 hours on an SGI 02 workstation with a 175 MHz MIPS RIOOOO processor. The bulk of the computer time is spent on the FDPB calculations. The speed of the procedure is important, because it makes it possible to collect results on many systems and with many different sets of parameters in a reasonable amount of time. Thus, improvements to the method can be made based on a broad sampling of systems. [Pg.188]

The catalytic subunit then catalyzes the direct transfer of the 7-phosphate of ATP (visible as small beads at the end of ATP) to its peptide substrate. Catalysis takes place in the cleft between the two domains. Mutual orientation and position of these two lobes can be classified as either closed or open, for a review of the structures and function see e.g. [36]. The presented structure shows a closed conformation. Both the apoenzyme and the binary complex of the porcine C-subunit with di-iodinated inhibitor peptide represent the crystal structure in an open conformation [37] resulting from an overall rotation of the small lobe relative to the large lobe. [Pg.190]

Karlsson, R., Zheng, J., Zheng, N.-H., Taylor, S. S., Sowadski, J. M. Structure of the mamalian catalytic subunit of cAMP-dependent protein kinase and an inhibitor peptide displays an open conformation. Acta Cryst. D 49 (1993) 381-388. [Pg.196]

In another experiment tritiated adamantane diazirine fixed to the hydrocarbon core of a membrane gave rise to carbene insertion into the catalytic subunit of ATP-ase. After protolytic degradation adjacent areas of the original structure became evident (80JBC(255)860). [Pg.236]

Myristic acid may be linked via an amide bond to the a-amino group of the N-terminal glycine residue of selected proteins (Figure 9.18). The reaction is referred to as A -myristoylation and is catalyzed by myristoyl—CoAtprolein N-myris-toyltransferase, known simply as NMT. A -Myristoyl-anchored proteins include the catalytic subunit of cAMP-dependent protein kinase, the ppSff tyrosine kinase, the phosphatase known as calcineurin B, the a-subunit of G proteins (involved in GTP-dependent transmembrane signaling events), and the gag proteins of certain retroviruses, including the FHV-l virus that causes AIDS. [Pg.275]

FIGURE 15.7 Cyclic AMP-dependent protein kinase (also known as PKA) is a 150- to l70-kD R9C9 tetramer in mammalian cells. The two R (regulatory) subunits bind cAMP ( = 3 X 10 M) cAMP binding releases the R subunits from the C (catalytic) subunits. C subunits are enzymatically active as monomers. [Pg.468]

The a subunits, for which two isoforms exist in mammals (al, a2), contain conventional protein serine/threonine kinase domains at the N-terminus, with a threonine residue in the activation loop (Thr-172) that must be phosphorylated by upstream kinases (see below) before the kinase is active. The kinase domain is followed by an autoinhibitory domain, whose effect is somehow relieved by interaction with the other subunits. The C-terminal domain of the a subunit is required for the formation of a complex with the C-terminal domain of the (3 subunit, which in turn mediates binding to the y subunit. The al and a2 catalytic subunit isoforms are widely distributed, although a2 is most abundant in muscle and may be absent in cells of the endothelial/hemopoietic lineage. [Pg.69]

Tyrosine phosphorylated IRS interacts with and activates PI 3-kinase [3]. Binding takes place via the SRC homology 2 (SH2) domain of the PI 3-kinase regulatory subunit. The resulting complex consisting of INSR, IRS, and PI 3-kinase facilitates interaction of the activated PI 3-kinase catalytic subunit with the phospholipid substrates in the plasma membrane. Generation of PI 3-phosphates in the plasma membrane reemits phospholipid dependent kinases (PDKl and PDK2) which subsequently phosphorylate and activate the serine/threonine kinase Akt (synonym protein... [Pg.634]

Smooth muscle myosin phosphatase contains tree subunits, a 110-130 kDa myosin phosphatase targeting and regulatory subunit (MYPT1), a 37 kDa catalytic subunit (PP-1C) and a 20 kDa subunit of unknown function. [Pg.799]

Threonine peptidases (and some cysteine and serine peptidases) have only one active site residue, which is the N-terminus of the mature protein. Such a peptidase is known as an N-terminal nucleophile hydrolase or Ntn-hydrolase. The amino group of the N-terminal residue performs the role of the general base. The catalytic subunits of the proteasome are examples of Ntn-hydrolases. [Pg.877]

PB T1 T01.010 Proteasome catalytic subunit 1 Potential use in cancer, rheumatoid arthritis and psoriasis that are characterized by these processes... [Pg.880]

All class I PI3Ks are heterodimeric enzymes composed of a 110 kDa catalytic subunit (with the isoforms pi 10 a,(3,5 or y) that associates with a regulatory subunit. Although the class I PI3Ks are capable of phosphorylating Ptdlns, PtdIns(4)P and PtdIns(4,5)P2 in vitro, it appears that they only use PtdIns(4,5)P2 as a substrate in vivo. Receptor-induced formation of Ptdlns... [Pg.971]

Protein kinase A (PKA) is a cyclic AMP-dependent protein kinase, a member of a family of protein kinases that are activated by binding of cAMP to their two regulatory subunits, which results in the release of two active catalytic subunits. Targets of PKA include L-type calcium channels (the relevant subunit and site of phosphorylation is still uncertain), phospholam-ban (the regulator of the sarcoplasmic calcium ATPase, SERCA) and key enzymes of glucose and lipid metabolism. [Pg.979]

Calcium-dependent regulation involves the calcium-calmodulin complex that activates smooth muscle MLCK, a monomer of approximately 135 kDa. Dephosphorylation is initiated by MLCP. MLCP is a complex of three proteins a 110-130 kDa myosin phosphatase targeting and regulatory subunit (MYPT1), a 37 kDa catalytic subunit (PP-1C) and a 20 kDa subunit of unknown function. In most cases, calcium-independent regulation of smooth muscle tone is achieved by inhibition of MLCP activity at constant calcium level inducing an increase in phospho-rMLC and contraction (Fig. 1). [Pg.1142]


See other pages where Catalytic subunit is mentioned: [Pg.191]    [Pg.196]    [Pg.237]    [Pg.106]    [Pg.201]    [Pg.466]    [Pg.468]    [Pg.479]    [Pg.2]    [Pg.71]    [Pg.246]    [Pg.294]    [Pg.294]    [Pg.310]    [Pg.311]    [Pg.311]    [Pg.343]    [Pg.611]    [Pg.971]    [Pg.973]    [Pg.973]    [Pg.974]    [Pg.1013]    [Pg.1144]    [Pg.1264]    [Pg.13]    [Pg.14]    [Pg.89]    [Pg.51]    [Pg.52]    [Pg.75]   
See also in sourсe #XX -- [ Pg.348 ]

See also in sourсe #XX -- [ Pg.348 ]

See also in sourсe #XX -- [ Pg.348 ]

See also in sourсe #XX -- [ Pg.348 ]




SEARCH



Adenylate cyclase catalytic subunit

Aspartate carbamoyltransferase catalytic subunit

Aspartate transcarbamylase catalytic subunit

DNA-dependent protein kinase catalytic subunit

Glutathione catalytic subunit

Subunit structure catalytic sites

Type 1 Catalytic Subunit

© 2024 chempedia.info