Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

From synthesis gas

Carbon dioxide, COj. Sublimes — 78 5 C. A colourless gas at room temperature, occurs naturally and plays an important part in animal and plant respiration. Produced by the complete combustion of carbon-containing materials (industrially from flue gases and from synthesis gas used in ammonia production) and by heating metal carbonates or by... [Pg.81]

Since 1960, the Hquid-phase oxidation of ethylene has been the process of choice for the manufacture of acetaldehyde. There is, however, stiU some commercial production by the partial oxidation of ethyl alcohol and hydration of acetylene. The economics of the various processes are strongly dependent on the prices of the feedstocks. Acetaldehyde is also formed as a coproduct in the high temperature oxidation of butane. A more recently developed rhodium catalyzed process produces acetaldehyde from synthesis gas as a coproduct with ethyl alcohol and acetic acid (83—94). [Pg.51]

From Synthesis Gas. A rhodium-catalyzed process capable of converting synthesis gas directly into acetaldehyde in a single step has been reported (83,84). [Pg.52]

Commercial production of acetic acid has been revolutionized in the decade 1978—1988. Butane—naphtha Hquid-phase catalytic oxidation has declined precipitously as methanol [67-56-1] or methyl acetate [79-20-9] carbonylation has become the technology of choice in the world market. By-product acetic acid recovery in other hydrocarbon oxidations, eg, in xylene oxidation to terephthaUc acid and propylene conversion to acryflc acid, has also grown. Production from synthesis gas is increasing and the development of alternative raw materials is under serious consideration following widespread dislocations in the cost of raw material (see Chemurgy). [Pg.66]

Fischer-Tropsch Process. The Hterature on the hydrogenation of carbon monoxide dates back to 1902 when the synthesis of methane from synthesis gas over a nickel catalyst was reported (17). In 1923, F. Fischer and H. Tropsch reported the formation of a mixture of organic compounds they called synthol by reaction of synthesis gas over alkalized iron turnings at 10—15 MPa (99—150 atm) and 400—450°C (18). This mixture contained mostly oxygenated compounds, but also contained a small amount of alkanes and alkenes. Further study of the reaction at 0.7 MPa (6.9 atm) revealed that low pressure favored olefinic and paraffinic hydrocarbons and minimized oxygenates, but at this pressure the reaction rate was very low. Because of their pioneering work on catalytic hydrocarbon synthesis, this class of reactions became known as the Fischer-Tropsch (FT) synthesis. [Pg.164]

In 1991, the relatively old and small synthetic fuel production faciHties at Sasol One began a transformation to a higher value chemical production facihty (38). This move came as a result of declining economics for synthetic fuel production from synthesis gas at this location. The new faciHties installed in this conversion will expand production of high value Arge waxes and paraffins to 123,000 t/yr in 1993. Also, a new faciHty for production of 240,00 t/yr of ammonia will be added. The complex will continue to produce ethylene and process feedstock from other Sasol plants to produce alcohols and higher phenols. [Pg.167]

Historically, formaldehyde has been and continues to be manufactured from methanol. EoUowing World War II, however, as much as 20% of the formaldehyde produced in the United States was made by the vapor-phase, noncatalytic oxidation of propane and butanes (72). This nonselective oxidation process produces a broad spectmm of coproducts (73) which requites a complex cosdy separation system (74). Hence, the methanol process is preferred. The methanol raw material is normally produced from synthesis gas that is produced from methane. [Pg.493]

Liquid Fuels via Methanol Synthesis and Conversion. Methanol is produced catalyticaHy from synthesis gas. By-products such as ethers, formates, and higher hydrocarbons are formed in side reactions and are found in the cmde methanol product. Whereas for many years methanol was produced from coal, after World War II low cost natural gas and light petroleum fractions replaced coal as the feedstock. [Pg.82]

There are some chemicals that can be made economically from coal or coal-derived substances. Methanol and CO are used to make acetic anhydride and acetic acid. Methanol itself can be made from synthesis gas over a copper-2inc catalyst (see Feedstocks, coal chemicals). [Pg.366]

Synthesis Gas Chemicals. Hydrocarbons are used to generate synthesis gas, a mixture of carbon monoxide and hydrogen, for conversion to other chemicals. The primary chemical made from synthesis gas is methanol, though acetic acid and acetic anhydride are also made by this route. Carbon monoxide (qv) is produced by partial oxidation of hydrocarbons or by the catalytic steam reforming of natural gas. About 96% of synthesis gas is made by steam reforming, followed by the water gas shift reaction to give the desired H2 /CO ratio. [Pg.366]

R. A. Sheldon, Chemicals From Synthesis Gas Catalytic Reactions of CO and H, D. Reidel Publishing Company, 1983, p. 86. [Pg.433]

Methanol [67-56-1] (methyl alcohol), CH OH, is a colorless Hquid at ambient temperatures with a mild, characteristic alcohol odor. Originally called wood alcohol siace it was obtained from the destmctive distillation of wood, today commercial methanol is sometimes referred to as synthetic methanol because it is produced from synthesis gas, a mixture of hydrogen and carbon oxides, generated by a variety of sources. [Pg.274]

Carbon monoxide (qv), eg, by-product CO from phosphoms manufacture or extracted from synthesis gas, is freed of acidic gases and absorbed in 50—80 wt % KOH at 100—200°C at a partial pressure of Pqq > Pa (>100 psi). The reaction is fairly slow. [Pg.533]

The Rectisol process is more readily appHcable for acid gas removal from synthesis gas made by partial oxidation of heavy feedstocks. The solvents used in Purisol, Fluor Solvent, and Selexol processes have low vapor pressures and hence solution losses are minimal. Absorption systems are generally corrosion-free. [Pg.349]

Synthetic Fuels. Hydrocarbon Hquids made from nonpetroleum sources can be used in steam crackers to produce olefins. Fischer-Tropsch Hquids, oil-shale Hquids, and coal-Hquefaction products are examples (61) (see Fuels, synthetic). Work using Fischer-Tropsch catalysts indicates that olefins can be made directly from synthesis gas—carbon monoxide and hydrogen (62,63). Shape-selective molecular sieves (qv) also are being evaluated (64). [Pg.126]

Chem Systems Inc. proposed a process in which ben2yl alcohol obtained by an undisclosed direct oxidation of toluene is homologated with synthesis gas to yield 2-phen5iethyl alcohol, which is then readily dehydrated to styrene (57). This process eliminates the intermediate formation of methanol from synthesis gas but does require the independent production of ben2yl alcohol. [Pg.190]

This process may be competitive with butane oxidation (see Hydrocarbon oxidation) which produces a spectmm of products (138), but neither process is competitive with the process from synthesis gas practiced by Monsanto (139) and BASF (140) which have been used in 90% of the new acetic acid capacity added since 1975. [Pg.374]

Hydrocarbons from Synthesis Gas and Methanol. Two very important catalytic processes in which hydrocarbons are formed from synthesis gas are the Sasol Eischer-Tropsch process, in which carbon monoxide and hydrogen obtained from coal gasification are converted to gasoline and other products over an iron catalyst, and the Mobil MTG process, which converts methanol to gasoline range hydrocarbons using ZSM-5-type 2eohte catalysts. [Pg.199]

Cyclopentadiene itself has been used as a feedstock for carbon fiber manufacture (76). Cyclopentadiene is also a component of supported metallocene—alumoxane polymerization catalysts in the preparation of syndiotactic polyolefins (77), as a nickel or iron complex in the production of methanol and ethanol from synthesis gas (78), and as Group VIII metal complexes for the production of acetaldehyde from methanol and synthesis gas (79). [Pg.435]

Other synthetic methods have been investigated but have not become commercial. These include, for example, the hydration of ethylene in the presence of dilute acids (weak sulfuric acid process) the conversion of acetylene to acetaldehyde, followed by hydrogenation of the aldehyde to ethyl alcohol and the Fischer-Tropsch hydrocarbon synthesis. Synthetic fuels research has resulted in a whole new look at processes to make lower molecular weight alcohols from synthesis gas. [Pg.403]

Other Methods of Preparation. In addition to the direct hydration process, the sulfuric acid process, and fermentation routes to manufacture ethanol, several other processes have been suggested. These include the hydration of ethylene by dilute acids, the hydrolysis of ethyl esters other than sulfates, the hydrogenation of acetaldehyde, and the use of synthesis gas. None of these methods has been successfilUy implemented on a commercial scale, but the route from synthesis gas has received a great deal of attention since the 1974 oil embargo. [Pg.407]

Synthesis Ga.s, Since petroleum prices rose abmpdy in 1974, the production of ethanol from synthesis gas, a mixture of carbon monoxide and hydrogen, has received considerable attention. The use of synthesis gas as a base raw material has the same drawback as fermentation technology low yields limited by stoichiometry. [Pg.408]

References 184 to 188 provide general reviews of the fuel alcohol from synthesis gas research. [Pg.408]

Although methanol from synthesis gas has been a large-scale industrial chemical for 70 years, the scientific basis of the manufacture apparently can stand some improvement, which was undertaken by Beenackers, Graaf, and Stamhiiis (in Gheremisinoff, ed., Handbook of Heat and Mass Transfer, vol. 3, Gulf, 1989, pp. 671—699). The process occurs at 50 to 100 atm with catalyst of oxides of Gii-Zn-Al and a feed stream of H2, GO, and GO2. Three reactions were taken for the process ... [Pg.2079]

Simpler, mostly power law rate equations for the production of mixed alcohols from synthesis gas are cited by Forzatti, Tronconi, and... [Pg.2079]

Fischer-Tropsch Synthesis The best-known technology for producing hydrocarbons from synthesis gas is the Fischer-Tropsch synthesis. This technology was first demonstrated in Germany in 1902 by Sabatier and Senderens when they hydrogenated carbon monoxide (CO) to methane, using a nickel catalyst. In 1926 Fischer and Tropsch were awarded a patent for the discovery of a catalytic technique to convert synthesis gas to liquid hydrocarbons similar to petroleum. [Pg.2376]

Oxygenates and Chemicals A whole host of oxygenated products, i.e., fuels, fuel additives, and chemicals, can be produced from synthesis gas. These include such produc ts as methanol, ethylene, isobutanol, dimethyl ether, dimethyl carbonate, and many other hydrocarbons and oxyhydrocarbons. Typical oxygenate-producing reactions are ... [Pg.2377]

The production of methyl acetate from synthesis gas is currently being practiced commercially. Following methanol synthesis, as shown by Reac tion (27-35), the reactions are ... [Pg.2377]

Synthetic waxes consist of Fischer-Tropsch, polyethylene, and specialty waxes. Fischer-Tropsch waxes are produced from synthesis gas (CO and H2). They are often termed synthetic paraffin . Crystallinity is similar to paraffin, but with a higher and bimodal melting point (see Figs. 11 and 12). F-T waxes are used instead of paraffin where higher heat resistance is needed. [Pg.726]

Synthesis gas is a major source of hydrogen, which is used for producing ammonia. Ammonia is the host of many chemicals such as urea, ammonium nitrate, and hydrazine. Carbon dioxide, a by-product from synthesis gas, reacts with ammonia to produce urea. [Pg.123]

Hydrocarbons from Synthesis Gas (Fischer Tropsch Synthesis, FTS)... [Pg.123]

Many chemicals are produced from synthesis gas. This is a consequence of the high reactivity associated with hydrogen and carhon monoxide gases, the two constituents of synthesis gas. The reactivity of this mixture was demonstrated during World War II, when it was used to produce alternative hydrocarbon fuels using Fischer Tropsch technology. The synthesis gas mixture was produced then hy gasifying coal. Fischer Tropsch synthesis of hydrocarbons is discussed in Chapter 4. [Pg.143]

Methanol, the second major product from synthesis gas, is a unique compound of high chemical reactivity as well as good fuel properties. It... [Pg.143]

Methanol was originally produced by the destructive distillation of wood (wood alcohol) for charcoal production. Currently, it is mainly produced from synthesis gas. [Pg.149]

Acetic acid is also produced hy the oxidation of acetaldehyde and the oxidation of n-hutane. However, acetic acid from the carhonylation route has an advantage over the other commercial processes because both methanol and carbon monoxide come from synthesis gas, and the process conditions are quite mild. [Pg.155]

Ethylene glycol could he produced directly from synthesis gas using an Rh catalyst at 230°C at very high pressure (3,400 atm). In theory, five moles synthesis gas mixture are needed to produce one mole ethylene glycol ... [Pg.166]


See other pages where From synthesis gas is mentioned: [Pg.47]    [Pg.613]    [Pg.68]    [Pg.163]    [Pg.164]    [Pg.166]    [Pg.79]    [Pg.366]    [Pg.416]    [Pg.160]    [Pg.178]    [Pg.339]    [Pg.52]    [Pg.821]    [Pg.821]   
See also in sourсe #XX -- [ Pg.287 ]




SEARCH



Gases synthesis gas

© 2024 chempedia.info