Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic oxidizer

Manufactured by the liquid-phase oxidation of ethanal at 60 C by oxygen or air under pressure in the presence of manganese(ii) ethanoate, the latter preventing the formation of perelhanoic acid. Another important route is the liquid-phase oxidation of butane by air at 50 atm. and 150-250 C in the presence of a metal ethanoate. Some ethanoic acid is produced by the catalytic oxidation of ethanol. Fermentation processes are used only for the production of vinegar. [Pg.164]

Some early observations on the catalytic oxidation of SO2 to SO3 on platinized asbestos catalysts led to the following observations (1) the rate was proportional to the SO2 pressure and was inversely proportional to the SO3 pressure (2) the apparent activation energy was 30 kcal/mol (3) the heats of adsorption for SO2, SO3, and O2 were 20, 25, and 30 kcal/mol, respectively. By using appropriate Langmuir equations, show that a possible explanation of the rate data is that there are two kinds of surfaces present, 5 and S2, and that the rate-determining step is... [Pg.741]

Stampfl C and Scheffler M 1997 Anomalous behavior of Ru for catalytic oxidation a theoretical study of the catalytic reaction CO+1/2 O2 to CO2 Phys. Rev. Lett. 78 1500... [Pg.2236]

Industrially nitrogen monoxide is prepared by the catalytic oxidation of ammonia as an intermediate in the manufacture of nitric acid (p. 238). The molecule of nitrogen monoxide contains an odd number of electrons and can be represented as... [Pg.230]

On the large scale, nitric acid is now made in large quantities by the catalytic oxidation of ammonia, employing the reaction ... [Pg.238]

Technically, acetaldehyde is mainly made by the oxidation of ethylene using a CuCl2/PdCl2 catalyst system.. Although some acetic acid is still prepared by the catalytic oxidation of acetaldehyde, the main process is the catalytic oxidation of paraffins, usually -butane. [Pg.74]

A catalytic enantio- and diastereoselective dihydroxylation procedure without the assistance of a directing functional group (like the allylic alcohol group in the Sharpless epox-idation) has also been developed by K.B. Sharpless (E.N. Jacobsen, 1988 H.-L. Kwong, 1990 B.M. Kim, 1990 H. Waldmann, 1992). It uses osmium tetroxide as a catalytic oxidant (as little as 20 ppm to date) and two readily available cinchona alkaloid diastereomeis, namely the 4-chlorobenzoate esters or bulky aryl ethers of dihydroquinine and dihydroquinidine (cf. p. 290% as stereosteering reagents (structures of the Os complexes see R.M. Pearlstein, 1990). The transformation lacks the high asymmetric inductions of the Sharpless epoxidation, but it is broadly applicable and insensitive to air and water. Further improvements are to be expected. [Pg.129]

The catalytic oxidative carbonylation of allene with PdCb and CuCh in MeOH affords methyl a-methoxymethacrylate (559)[499]. The intramolecular oxidative aminocarbonylation of the 6-aminoallene 560 affords the unsaturated J-amino ester 561. The reaction has been applied to the enantioselective synthesis of pumiliotoxin (562)[500]. A similar intramolecular oxycarbonyla-tion of 6-hydroxyallenes affords 2-(2-tetrahydrofuranyl)acrylates[501]. [Pg.103]

Oxidative carbonylation of alcohols with PdCh affords the carbonate 572 and oxalate 573(512-514]. The selectivity of the mono- and dicarbonylation depends on the CO pressure and reaction conditions. In order to make the reaction catalytic, Cu(II) and Fe(III) salts are used. Under these conditions, water is formed and orthoformate is added in order to trap the water. Di-/-butyl peroxide is also used for catalytic oxidative carbonylation to give carbonates and oxalates in the presence of 2,6-dimetliylpyridine(515]. [Pg.105]

The alkyl derivatives of thiazoles can be catalytically oxidized in the vapor phase at 250 to 400°C to afford the corresponding formyl derivatives (21). Molybdenum oxide, V2O5, and tin vanadate are used as catalysts either alone or with a support. The resulting carbonyl compounds can be selectively oxidized to the acids. [Pg.521]

Catalytic oxidation of alkylthiazoles in the vapor phase (21) or oxidation of halomethylthiazoles (24, 27, 36) gives the carbonyl compound in low yield. [Pg.533]

Studies of the reaction mechanism of the catalytic oxidation suggest that a tit-hydroxyethylene—palladium 7t-complex is formed initially, followed by an intramolecular exchange of hydrogen and palladium to give a i yW-hydtoxyethylpalladium species that leads to acetaldehyde and metallic palladium (88-90). [Pg.51]

From Ethyl Alcohol. Some acetaldehyde is produced commercially by the catalytic oxidation of ethyl alcohol. The oxidation is carried out by passing alcohol vapors and preheated air over a silver catalyst at 480°C (98). [Pg.52]

Commercial production of acetic acid has been revolutionized in the decade 1978—1988. Butane—naphtha Hquid-phase catalytic oxidation has declined precipitously as methanol [67-56-1] or methyl acetate [79-20-9] carbonylation has become the technology of choice in the world market. By-product acetic acid recovery in other hydrocarbon oxidations, eg, in xylene oxidation to terephthaUc acid and propylene conversion to acryflc acid, has also grown. Production from synthesis gas is increasing and the development of alternative raw materials is under serious consideration following widespread dislocations in the cost of raw material (see Chemurgy). [Pg.66]

The Acetaldehyde Oxidation Process. Liquid-phase catalytic oxidation of acetaldehyde (qv) can be directed by appropriate catalysts, such as transition metal salts of cobalt or manganese, to produce anhydride (26). Either ethyl acetate or acetic acid may be used as reaction solvent. The reaction proceeds according to the sequence... [Pg.76]

Direct oxidation of hydrocarbons and catalytic oxidation of isopropyl alcohol have also been used for commercial production of acetone. [Pg.94]

In the early versions, ethylene cyanohydrin was obtained from ethylene chlorohydrin and sodium cyanide. In later versions, ethylene oxide (from the dkect catalytic oxidation of ethylene) reacted with hydrogen cyanide in the presence of a base catalyst to give ethylene cyanohydrin. This was hydrolyzed and converted to acryhc acid and by-product ammonium acid sulfate by treatment with about 85% sulfuric acid. [Pg.155]

There are currentiy two principal processes used for the manufacture of monomeric acryhc esters the semicatalytic Reppe process and the propylene oxidation process. The newer propylene oxidation process is preferred because of economy and safety. In this process acroleia [107-02-8] is first formed by the catalytic oxidation of propylene vapor at high temperature ia the preseace of steam. The acroleia is thea oxidi2ed to acryhc acid [79-10-7]. [Pg.164]


See other pages where Catalytic oxidizer is mentioned: [Pg.381]    [Pg.941]    [Pg.3066]    [Pg.211]    [Pg.19]    [Pg.46]    [Pg.65]    [Pg.149]    [Pg.149]    [Pg.8]    [Pg.97]    [Pg.165]    [Pg.271]    [Pg.271]    [Pg.373]    [Pg.375]    [Pg.378]    [Pg.381]    [Pg.476]    [Pg.490]    [Pg.612]    [Pg.622]    [Pg.624]    [Pg.815]    [Pg.815]    [Pg.818]    [Pg.1001]    [Pg.1078]    [Pg.88]    [Pg.148]    [Pg.389]    [Pg.412]   
See also in sourсe #XX -- [ Pg.1420 ]




SEARCH



© 2024 chempedia.info