Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Various processes

Further explanation of this Cl process can be found in Chapter 1. Briefly, Cl results from collision between sample molecules and specially produced reagent gas ions such that ions are formed from sample molecules by various processes, one of the most important of which is the transfer of a proton (H+, Figure 9.2). [Pg.62]

Since 1960, the Hquid-phase oxidation of ethylene has been the process of choice for the manufacture of acetaldehyde. There is, however, stiU some commercial production by the partial oxidation of ethyl alcohol and hydration of acetylene. The economics of the various processes are strongly dependent on the prices of the feedstocks. Acetaldehyde is also formed as a coproduct in the high temperature oxidation of butane. A more recently developed rhodium catalyzed process produces acetaldehyde from synthesis gas as a coproduct with ethyl alcohol and acetic acid (83—94). [Pg.51]

Special zoning requirements based on load concentrations, and differences in conditions required for various processes... [Pg.360]

Lubricating Oil Extraction. Aromatics are removed from lubricating oils to improve viscosity and chemical stabihty (see Lubrication and lubricants). The solvents used are furfural, phenol, and Hquid sulfur dioxide. The latter two solvents are undesirable owing to concerns over toxicity and the environment and most newer plants are adopting furfural processes (see Furan derivatives). A useful comparison of the various processes is available (219). [Pg.78]

Various processes can be used to produce energy or gaseous, liquid, and solid fuels from biomass and wastes. In addition, chemicals can be produced by a wide range of processing techniques. The following Hst summarizes the principal feed, process, and product variables considered in developing a synfuel-from-biomass process. [Pg.15]

In this process, any sulfur present in the coal exits the gasifier as hydrogen sulfide which is removed by various processes such as a Hohnes-Stretford unit where the sulfide is absorbed and regenerated. The resulting sulfur is filtered out as a cake (39 wt %) which is sold as a valuable feedstock (see Coal CONVERSION PROCESSES, GASIFICATION SULFURREMOVAL AND RECOVERY). [Pg.454]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

Dead Seas Periclase Ltd., on the Dead Sea in Israel, uses yet another process to produce magnesium oxide. A concentrated magnesium chloride brine processed from the Dead Sea is sprayed into a reactor at about 1700°C (127,128). The brine is thermally decomposed into magnesium oxide and hydrochloric acid. To further process the magnesia, the product is slaked to form magnesium hydroxide which is then washed, filtered, and calcined under controlled conditions to produce a variety of MgO reactivity grades. A summary of MgO purities, for the various processes is given in Table 20. [Pg.354]

Table 20. Purity of Dead-Burned Magnesia from Various Processes ... Table 20. Purity of Dead-Burned Magnesia from Various Processes ...
Tetrahydronaphthalene is produced by the catalytic treatment of naphthalene with hydrogen. Various processes have been used, eg, vapor-phase reactions at 101.3 kPa (1 atm) as well as higher pressure Hquid-phase hydrogenation where the conditions are dependent upon the particular catalyst used. Nickel or modified nickel catalysts generally are used commercially however, they are sensitive to sulfur, and only naphthalene that has very low sulfur levels can be used. Thus many naphthalene producers purify their product to remove the thionaphthene, which is the principal sulfur compound present. Sodium treatment and catalytic hydrodesulfuri2ation processes have been used for the removal of sulfur from naphthalene the latter treatment is preferred because of the ha2ardous nature of sodium treatment. [Pg.483]

Biomarkers form a small percentage of bitumen and cmde oils, but relative distributions and complex stmctures are modified by the various processes involved during petroleum generation and accumulation. These biomarkers are widely used for correlation studies, and for recognition and documentation of the progress of generation and maturation (52,53). [Pg.162]

Thermal Process. In the manufacture of phosphoric acid from elemental phosphoms, white (yellow) phosphoms is burned in excess air, the resulting phosphoms pentoxide is hydrated, heats of combustion and hydration are removed, and the phosphoric acid mist collected. Within limits, the concentration of the product acid is controlled by the quantity of water added and the cooling capabiUties. Various process schemes deal with the problems of high combustion-zone temperatures, the reactivity of hot phosphoms pentoxide, the corrosive nature of hot phosphoric acid, and the difficulty of collecting fine phosphoric acid mist. The principal process types (Fig. 3) include the wetted-waH, water-cooled, or air-cooled combustion chamber, depending on the method used to protect the combustion chamber wall. [Pg.326]

Of the various processing techniques used, injection mol ding and extmsion involve Htfle or no exposure of hot product to the surrounding air, hence they give rise to no significant emission of plasticizer to the atmosphere. This is not the case in the production of sheet and film by calendering or spread coating. [Pg.131]

Extmsion accounts for about 30% of nylon produced and is used in various processes (24). Nylons can be extmded on conventional equipment having the following characteristics. The extmder drive should be capable of continuous variation over a range of screw speeds. Nylon often requires a high torque at low screw speeds typical power requirements would be a 7.5-kW motor for a 30-mm machine or 25-kW for 60-mm. A nylon screw is necessary and should not be cooled. Recommended compression ratios ate between 3.5 1 and 4 1 for nylon-6,6 and nylon-6 between 3 1 and 3.5 1 for nylon-11 and nylon-12. The length-to-diameter ratio, T/D should be greater than 15 1 at least 20 1 is recommended for nylon-6,6, and 25 1 for nylon-12. [Pg.273]

Various processes involve acetic acid or hydrocarbons as solvents for either acetylation or washing. Normal operation involves the recovery or recycle of acetic acid, any solvent, and the mother Hquor. Other methods of preparing aspirin, which are not of commercial significance, involve acetyl chloride and saHcyHc acid, saHcyHc acid and acetic anhydride with sulfuric acid as the catalyst, reaction of saHcyHc acid and ketene, and the reaction of sodium saHcylate with acetyl chloride or acetic anhydride. [Pg.291]

Technology has been developed for the absorption of nitrogen oxides from gas streams via sodium sulfide scmbber systems. The nitrogen oxide streams from various processes can be converted to elemental nitrogen, whereas the sulfide is oxidized to the sulfate ion (12). [Pg.211]

Sources of sulfur are called voluntary if sulfur is considered to be the principal, and often the only, product. Sulfur has also been recovered as a by-product from various process operations. Such sulfur is termed involuntary sulfur and accounts for the largest portion of world sulfur production (see Sulfur REMOVAL AND RECOVERY). [Pg.117]

Various processes have been disclosed wherein moist soHd sodium pyrosulfite [7681-57-4] is stirred in a steam-heated vessel with sodium carbonate. The exothermic reaction at 80—110°C results in the drying of the product. A lower grade of sodium sulfite is produced commercially in the United States as a by-product of the sulfonation—caustic cleavage route to resorcinol (333). [Pg.149]


See other pages where Various processes is mentioned: [Pg.187]    [Pg.401]    [Pg.20]    [Pg.623]    [Pg.400]    [Pg.312]    [Pg.191]    [Pg.523]    [Pg.186]    [Pg.547]    [Pg.76]    [Pg.407]    [Pg.514]    [Pg.92]    [Pg.44]    [Pg.228]    [Pg.379]    [Pg.30]    [Pg.443]    [Pg.474]    [Pg.296]    [Pg.346]    [Pg.347]    [Pg.350]    [Pg.307]    [Pg.119]    [Pg.212]    [Pg.218]    [Pg.224]    [Pg.346]    [Pg.406]    [Pg.415]    [Pg.113]   
See also in sourсe #XX -- [ Pg.123 ]




SEARCH



© 2024 chempedia.info