Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effluent costs

In some cases sensible design can lead to re-use of water, which reduces both water and effluent costs. This is best achieved by intelligent routing of the water rather than by treatment before re-use. Effluent treatment is best avoided wherever possible. For example, very slightly contaminated process wash water can be recovered for washing down floors. This reduces charges for both incoming water and effluent. [Pg.473]

The use of excess reactants, diluents, or heat carriers in the reactor design has a significant effect on the flowsheet recycle structure. Sometimes the recycling of unwanted byproduct to the reactor can inhibit its formation at the source. If this can be achieved, it improves the overall use of raw materials and eliminates effluent disposal problems. Of course, the recycling does in itself reuse some of the other costs. The general tradeoffs are discussed in Chap. 8. [Pg.126]

Additional separation and recycling. Once the possibilities for recycling streams directly, feed purification, and eliminating the use of extraneous materials for separation that cannot be recycled efiiciently have been exhausted, attention is turned to the fourth option, the degree of material recovery from the waste streams that are left. One very important point which should not be forgotten is that once the waste stream is rejected, any valuable material turns into a liability as an effluent material. The level of recovery in such situations needs careful consideration. It may be economical to carry out additional separation of the valuable material with a view to recycling that additional recovered material, particularly when the cost of downstream effluent treatment is taken into consideration. [Pg.287]

Figure 10.7 Effluent treatment costs should be included with raw materials costs when traded off against separation costs to obtain the optimal recovery. (From Smith and Petela, Chem. Eng., 513 24, 1991 reproduced by permission of the Institution of Chemical Engineers.)... Figure 10.7 Effluent treatment costs should be included with raw materials costs when traded off against separation costs to obtain the optimal recovery. (From Smith and Petela, Chem. Eng., 513 24, 1991 reproduced by permission of the Institution of Chemical Engineers.)...
The best solution to effluent problems is not to produce the waste in the first place, i.e., waste minimization. If waste can be minimized at the source, this brings the dual benefit of reducing waste treatment costs and reducing raw materials costs. [Pg.296]

The capital cost of most aqueous waste treatment operations is proportional to the total flow of wastewater, and the operating cost increases with decreasing concentration for a given mass of contaminant to be removed. Thus, if two streams require different treatment operations, it makes no sense to mix them and treat both streams in both treatment operations. This will increase both capital and operating costs. Rather, the streams should be segregated and treated separately in a distributed effluent treatment system. Indeed, effective primary treatment might mean that some streams do not need biological treatment at all. [Pg.310]

It is possible to dispense with the extraction step if the oxidation section is operated at high propylene concentrations and low steam levels to give a concentrated absorber effluent. In this case, the solvent recovery column operates at total organic reflux to effect a2eotropic dehydration of the concentrated aqueous acryflc acid. This results in a reduction of aqueous waste at the cost of somewhat higher energy usage. [Pg.154]

Secunda discharges no process water effluents. AU. water streams produced are cleaned and reused in the plant. The methane and light hydrocarbons in the product are reformed with steam to generate synthesis gas for recycle (14). Even at this large scale, the cost of producing fuels and chemicals by the Fischer-Tropsch process is dominated by the cost of synthesis gas production. Sasol has estimated that gas production accounts for 58% of total production costs (39). [Pg.168]

Gaseous Effluents. Twenty percent of the carbon disulfide used in xanthation is converted into hydrogen sulfide (or equivalents) by the regeneration reactions. Ninety to 95% of this hydrogen sulfide is recoverable by scmbbers that yield sodium hydrogen sulfide for the tanning or pulp industries, or for conversion back to sulfur. Up to 60% of the carbon disulfide is recyclable by condensation from rich streams, but costly carbon-bed... [Pg.353]

Another possible route for producing formaldehyde is by the dehydrogenation of methanol (109—111) which would produce anhydrous or highly concentrated formaldehyde solutions. Eor some formaldehyde users, minimization of the water in the feed reduces energy costs, effluent generation, and losses while providing more desirable reaction conditions. [Pg.494]

The need to meet environmental regulations can affect processing costs. Undesirable air emissions may have to be eliminated and Hquid effluents and soHd residues treated and disposed of by incineration or/and landfilling. It is possible for biomass conversion processes that utilize waste feedstocks to combine waste disposal and treatment with energy and/or biofuel production so that credits can be taken for negative feedstock costs and tipping or receiving fees. [Pg.16]

Vents and flares are intended to take contaminants released from safety valves away from work areas. However, if an elevated vent is at the level of an occupiable platform on the same or an adjacent unit, a worker may, under certain wind conditions, be subject to the nearly undiluted effluent of a vent. Whereas such elevated platforms may rarely be occupied, a heavy exposure from a vent could incapacitate a worker or cause a fall. Tanks that vent only when being filled are common causes of this concern. The usual solution is to raise the vent above any occupiable platform or, at greater cost, to scmb the vent effluent. [Pg.104]

The electric furnace is an alternative to the reverberatory furnace in environmentally sensitive areas where electricity costs are not too high. The electric furnace is versatile, produces small volumes of effluent gases, and the SO2 concentration can be easily controlled. Operating costs, however, are high. [Pg.167]

The high cost of coal handling and preparation and treatment of effluents, compounded by continuing low prices for cmde oil and natural gas, has precluded significant exploitation of coal as a feedstock for methanol. A small amount of methanol is made from coal in South Africa for local strategic reasons. Tennessee Eastman operates a 195,000-t/yr methanol plant in Tennessee based on the Texaco coal gasification process to make the methyl acetate intermediate for acetic anhydride production (15). [Pg.278]

Ammonium Ion Removal. A fixed-bed molecular-sieve ion-exchange process has been commercialized for the removal of ammonium ions from secondary wastewater treatment effluents. This application takes advantage of the superior selectivity of molecular-sieve ion exchangers for ammonium ions. The first plants employed clinoptilolite as a potentially low cost material because of its availability in natural deposits. The bed is regenerated with a lime-salt solution that can be reused after the ammonia is removed by pH adjustment and air stripping. The ammonia is subsequentiy removed from the air stream by acid scmbbing. [Pg.459]

Caro s acid is finding increasing appHcation ia hydrometaHurgy, pulp bleaching, effluent treatment, and electronics. There are several appHcations of Caro s acid ia hydrometaHurgy. It is usually made on-site by either the isothermal or the adiabatic process. The latter method is preferred because its capital cost is less and the system is safer due to the fact that the product is used as soon as it is made. [Pg.95]

In a similar appHcation, Cape Industries has announced its intention to commission a solvent extraction plant to recover acetic acid from an effluent generated at its dimethyl terephthalate [120-61-6] faciHty (Wilmington, North Carolina) (44,45). The plant was commissioned in Eebmary 1995. In this case, the solvent will be CYANEX 923 extractant [100786-00-3], CYANEX 923 is also a phosphine oxide, but unlike TOPO is a Hquid and can be used without a diluent (46,47). This has the benefit of reducing plant size, capital, and operating costs. [Pg.320]

Selection of the high pressure steam conditions is an economic optimisation based on energy savings and equipment costs. Heat recovery iato the high pressure system is usually available from the process ia the secondary reformer and ammonia converter effluents, and the flue gas ia the reformer convection section. Recovery is ia the form of latent, superheat, or high pressure boiler feedwater sensible heat. Low level heat recovery is limited by the operating conditions of the deaerator. [Pg.353]

Instrumental Interfaces. The basic objective for any coupling between a gas chromatograph (gc) and a mass spectrometer (ms) is to reduce the atmospheric operating pressure of the gc effluent to the operating pressure in the ms which is about 10 kPa (10 torr). Essential interface features include the capability to transmit the maximum amount of sample from the gc without losses from condensation or active sites promoting decomposition no restrictions or compromises placed on either the ms or the gc with regard to resolution of the components and reliability. The interface should also be mechanically simple and as low in cost as possible. [Pg.400]

In converting ESBR latex to the dry mbber form, coagulating chemicals, such as sodium chloride and sulfuric acid, are used to break the latex emulsion. This solution eventually ends up as plant effluent. The polymer cmmb must also be washed with water to remove excess acid and salts, which can affect the cure properties and ash content of the polymer. The requirements for large amounts of good-quaUty fresh water and the handling of the resultant effluent are of utmost importance in the manufacture of ESBR and directly impact on the plant operating costs. [Pg.494]


See other pages where Effluent costs is mentioned: [Pg.73]    [Pg.316]    [Pg.520]    [Pg.304]    [Pg.73]    [Pg.316]    [Pg.520]    [Pg.304]    [Pg.83]    [Pg.277]    [Pg.275]    [Pg.102]    [Pg.139]    [Pg.182]    [Pg.388]    [Pg.406]    [Pg.407]    [Pg.440]    [Pg.35]    [Pg.382]    [Pg.383]    [Pg.384]    [Pg.496]    [Pg.18]    [Pg.484]    [Pg.347]    [Pg.401]    [Pg.127]    [Pg.153]    [Pg.235]    [Pg.478]    [Pg.478]    [Pg.481]    [Pg.88]    [Pg.148]   
See also in sourсe #XX -- [ Pg.263 ]




SEARCH



Effluent

© 2024 chempedia.info