Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raw materials, costs

Margin = sales revenues - raw material costs in per tonne [Pg.12]

Prices EUR/t Highest 93/99 EUR/t/date Lowest 93/99 EUR/t/date 3 quarter 1999 EUR/t/date [Pg.12]

The situation for the years 2001, 2002, and 2003 for these commodity plastics, which represent 75 % of the total amoimt of polymers sold, is shown in Table 1.5. [Pg.12]


Unwanted byproducts usually cannot be converted back to useful products or raw materials. The reaction to unwanted byproducts creates both raw materials costs due to the raw materials which are wasted in their formation and environmental costs for their disposal. Thus maximum selectivity is wanted for the chosen reactor conversion. The objectives at this stage can be summarized as follows ... [Pg.25]

Raw materials efficiency. In choosing the reactor, the overriding consideration is usually raw materials efficiency (bearing in mind materials of construction, safety, etc.). Raw material costs are usually the most important costs in the whole process. Also, any inefficiency in raw materials use is likely to create waste streams that become an environmental problem. The reactor creates inefficiency in the use of raw materials in the following ways ... [Pg.60]

Considering raw materials costs only, the economic potential (EP) of the process is defined as... [Pg.105]

Raw materials costs dominate the operating costs of most processes (see App. A). Also, if raw materials are not used efficiently, this creates waste, which then becomes an environmental problem. It is therefore important to have a measure of the efficiency of raw materials use. The process yield is defined as... [Pg.122]

EP = value of products - raw materials costs - annualized capital cost - energy cost... [Pg.241]

The value of PRODUCT formation and the raw materials cost of FEED that reacts to PRODUCT are constant. Alternatively, if the byproduct has no value, the cost of disposal should be included as... [Pg.244]

By considering only those raw materials which undergo reaction to undesired byproduct, only the raw materials costs which are in principle avoidable are considered. Those raw materials costs which are inevitable (i.e., the stoichiometric requirements for FEED which converts into the desired PRODUCT) are not included. Raw materials costs which are in principle avoidable are distinguished from those which are inevitable from the stoichiometric requirements of the reaction. ... [Pg.244]

Figure 8.4 shows the cost tradeoffs for the present case. At high conversions, the raw materials costs due to byproduct formation are dominant. This is so because the reaction to the undesired... [Pg.244]

The whole problem is best dealt with by not making the waste in the first place, i.e., waste minimization. If waste can be minimized at the source, this brings the dual benefit of reducing waste treatment costs and reducing raw materials costs. [Pg.274]

Figure 10.7 shows the basic tradeoff to be considered as additional feed and product materials are recovered from waste streams and recycled. As the fractional recovery increases, the cost of the separation and recycle increases. On the dther hand, the cost of the lost materials decreases. It should be noted that the raw materials cost is a net cost, which means that the cost of lost materials should be adjusted to either... [Pg.287]

Figure 10.7 shows that the tradeoff between separation and net raw materials cost gives an economically optimal recovery. It is possible that significant changes in the degree of recovery can have a significant effect on costs other than those shown in Fig. 10.7 (e.g., reactor costs). If this is the case, then these also must be included in the tradeoffs. [Pg.287]

Figure 10.7 Effluent treatment costs should be included with raw materials costs when traded off against separation costs to obtain the optimal recovery. (From Smith and Petela, Chem. Eng., 513 24, 1991 reproduced by permission of the Institution of Chemical Engineers.)... Figure 10.7 Effluent treatment costs should be included with raw materials costs when traded off against separation costs to obtain the optimal recovery. (From Smith and Petela, Chem. Eng., 513 24, 1991 reproduced by permission of the Institution of Chemical Engineers.)...
In most processes, the largest individual cost is raw materials. Raw materials costs and product prices tend to have the largest influence on the economic performance of the process. The value of raw materials and products depends on whether the materials in question are being bought and sold under a contractual arrangement (either within or outside the company) or on the open market (the spot price). Open-market prices can fluctuate considerably with time. Products are normally sold at below open-market price when under a contractual arrangement. [Pg.407]

Group). This published information can be used to assess at what price a new product will sell or to assess the minimum allowable selling price for given raw materials costs. [Pg.408]

Manufacture Various methods for the manufacture of acrylates are summarized in Figure 1, showing thek dependence on specific raw materials. For a route to be commercially attractive, the raw material costs and utilization must be low, plant investment and operating costs not excessive, and waste disposal charges minimal. [Pg.151]

After development of a new process scheme at laboratory scale, constmction and operation of pilot-plant faciUties to confirm scale-up information often require two or three years. An additional two to three years is commonly required for final design, fabrication of special equipment, and constmction of the plant. Thus, projections of raw material costs and availabiUty five to ten years into the future become important in adopting any new process significantly different from the current technology. [Pg.152]

Important side reactions are the formation of ether and addition of alcohol to the acrylate to give 3-alkoxypropionates. In addition to high raw material costs, this route is unattractive because of large amounts of sulfuric acid—ammonium sulfate wastes. [Pg.155]

Dehydrogenation of Propionates. Oxidative dehydrogenation of propionates to acrylates employing vapor-phase reactions at high temperatures (400—700°C) and short contact times is possible. Although selective catalysts for the oxidative dehydrogenation of isobutyric acid to methacrylic acid have been developed in recent years (see Methacrylic ACID AND DERIVATIVES) and a route to methacrylic acid from propylene to isobutyric acid is under pilot-plant development in Europe, this route to acrylates is not presentiy of commercial interest because of the combination of low selectivity, high raw material costs, and purification difficulties. [Pg.156]

The propylene-based process developed by Sohio was able to displace all other commercial production technologies because of its substantial advantage in overall production costs, primarily due to lower raw material costs. Raw material costs less by-product credits account for about 60% of the total acrylonitrile production cost for a world-scale plant. The process has remained economically advantaged over other process technologies since the first commercial plant in 1960 because of the higher acrylonitrile yields resulting from the introduction of improved commercial catalysts. Reported per-pass conversions of propylene to acrylonitrile have increased from about 65% to over 80% (28,68—70). [Pg.184]

In all appHcations involving zirconia, the thermal instabiHty of the tetragonal phase presents limitations especially for prolonged use at temperatures greater than - 1000° C or uses involving thermal cycling. Additionally, the sensitivity of Y—TZP ceramics to aqueous environments at low temperatures has to be taken into account. High raw material costs have precluded some appHcations particularly in the automotive industry. [Pg.325]

One possible route is to make formaldehyde direcdy from methane by partial oxidation. This process has been extensively studied (106—108). The incentive for such a process is reduction of raw material costs by avoiding the capital and expense of producing the methanol from methane. [Pg.494]

Ethers, such as MTBE and methyl / fZ-amyl ether (TAME) are made by a catalytic process from methanol (qv) and the corresponding isomeric olefin. These ethers have excellent octane values and compete on an economic basis with alkylation for inclusion in gasoline. Another ether, ethyl tert-huty ether (ETBE) is made from ethanol (qv) and isobutylene (see Butylenes). The cost and economic driving forces to use ETBE vs MTBE or TAME ate a function of the raw material costs and any tax incentives that may be provided because of the ethanol that is used to produce it. [Pg.185]

Elements that the researcher evaluates about competitors include plants, processes, raw material costs and avakabiHty, distribution channels, product development skills, service faciHties, personnel, pricing poHcies, eg, does the competitor lead or foUow , and practices or concessions to secure and hold large customers. AH of these factors are weighed and then the researcher decides on a strategy for the company. [Pg.536]

Synthesis. Exploratory research has produced a wide variety of odorants based on natural stmctures, chemicals analogous to naturals, and synthetic materials derived from available raw materials and economical processing. As in most areas of the chemical industry, the search for new and useful substances is made difficult by the many materials that have been patented and successfully commercialized (4). In the search for new aroma chemicals, many new materials are prepared for screening each year. Chemists who perform this work are involved in a creative exercise that takes its direction from the commercial sector in terms of desirable odor types and specific performance needs. Because of economic limitations, considerations of raw material costs and available processing methods may play a role eady in the exploratory work. [Pg.84]

When low boiling ingredients such as ethylene glycol are used, a special provision in the form of a partial condenser is needed to return them to the reactor. Otherwise, not only is the balance of the reactants upset and the raw material cost of the resin increased, but also they become part of the pollutant in the waste water and incur additional water treatment costs. Usually, a vertical reflux condenser or a packed column is used as the partial condenser, which is installed between the reactor and the overhead total condenser, as shown in Figure 3. The temperature in the partial condenser is monitored and maintained to effect a fractionation between water, which is to pass through, and the glycol or other materials, which are to be condensed and returned to the reactor. If the fractionation is poor, and water vapor is also condensed and returned, the reaction is retarded and there is a loss of productivity. As the reaction proceeds toward completion, water evolution slows down, and most of the glycol has combined into the resin stmcture. The temperature in the partial condenser may then be raised to faciUtate the removal of water vapor. [Pg.40]

If the total alkyds consumed in recent years is classified by their dibasic acid component, about 50% belongs to the unmodified phthaHc type, about 28% modified phthaHc type, about 13% based on isophthaHc, and the balance based on polybasic acids other than phthaHc or isophthaHc. The top alkyd resin manufacturers in the U.S. are Cargill, Reichhold, a subsidiary of Dainippon Ink Chemicals, Inc., and Spencer KeUog, now a part of NL Industries, Inc. The median price (52,53), of general types of alkyd resin, soHds base, was 1.98/kg in Nov. 1990 compared to about 440 in 1955, about 660 in 1975, and about 1.54 in 1983, reflecting the increases in raw material cost. [Pg.43]

Among the key variables in strategic alkylphenol planning are feedstock quaHty and availabiHty, equipment capabiHty, environmental needs, and product quahty. In the past decade, environmental needs have grown enormously in their effect on economic decisions. The manufacturing cost of alkylphenols includes raw-material cost, nonraw-material variable cost, fixed cost, and depreciation. [Pg.64]


See other pages where Raw materials, costs is mentioned: [Pg.17]    [Pg.17]    [Pg.26]    [Pg.105]    [Pg.241]    [Pg.407]    [Pg.97]    [Pg.321]    [Pg.37]    [Pg.420]    [Pg.119]    [Pg.394]    [Pg.28]    [Pg.34]    [Pg.249]    [Pg.66]    [Pg.540]    [Pg.547]    [Pg.298]   
See also in sourсe #XX -- [ Pg.407 , Pg.408 ]

See also in sourсe #XX -- [ Pg.47 ]

See also in sourсe #XX -- [ Pg.408 ]

See also in sourсe #XX -- [ Pg.112 ]

See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Material costs

Operating cost raw materials

Plastic raw materials costs per litre

Sourcing and Cost of Raw Materials

© 2024 chempedia.info