Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction step

Samples of urine that do not contain quinine still contain a small amount of fluorescent material after the extraction steps. Flow can the quantitative procedure described earlier be modified to take this into account ... [Pg.431]

Fraction of Solute Remaining in Tube r After Extraction Step n for a Countercurrent Extraction... [Pg.757]

The extract is vacuum-distilled ia the solvent recovery column, which is operated at low bottom temperatures to minimise the formation of polymer and dimer and is designed to provide acryUc acid-free overheads for recycle as the extraction solvent. A small aqueous phase in the overheads is mixed with the raffinate from the extraction step. This aqueous material is stripped before disposal both to recover extraction solvent values and minimise waste organic disposal loads. [Pg.154]

It is possible to dispense with the extraction step if the oxidation section is operated at high propylene concentrations and low steam levels to give a concentrated absorber effluent. In this case, the solvent recovery column operates at total organic reflux to effect a2eotropic dehydration of the concentrated aqueous acryflc acid. This results in a reduction of aqueous waste at the cost of somewhat higher energy usage. [Pg.154]

Anhydrous Acetic Acid. In the manufacture of acetic acid by direct oxidation of a petroleum-based feedstock, solvent extraction has been used to separate acetic acid [64-19-7] from the aqueous reaction Hquor containing significant quantities of formic and propionic acids. Isoamyl acetate [123-92-2] is used as solvent to extract nearly all the acetic acid, and some water, from the aqueous feed (236). The extract is then dehydrated by azeotropic distillation using isoamyl acetate as water entrainer (see DISTILLATION, AZEOTROPIC AND EXTRACTIVE). It is claimed that the extraction step in this process affords substantial savings in plant capital investment and operating cost (see Acetic acid and derivatives). A detailed description of various extraction processes is available (237). [Pg.79]

Decomposition of Zircon. Zircon sand is inert and refractory. Therefore the first extractive step is to convert the zirconium and hafnium portions into active forms amenable to the subsequent processing scheme. For the production of hafnium, this is done in the United States by carbochlorination as shown in Figure 1. In the Ukraine, fluorosiUcate fusion is used. Caustic fusion is the usual starting procedure for the production of aqueous zirconium chemicals, which usually does not involve hafnium separation. Other methods of decomposing zircon such as plasma dissociation or lime fusions are used for production of some grades of zirconium oxide. [Pg.440]

A commercial process which uses hydrothermal leaching on a large scale is the Bayer process for production of aluminum oxide (see Aluminum compounds). This process is used to extract and precipitate high grade alurninum hydroxide (gibbsite [14762-49-3]) from bauxite [1318-16-7] ore. The hydrothermal process step is the extraction step in which concentrated sodium hydroxide is used to form a soluble sodium aluminate complex ... [Pg.497]

The purified acid is recovered from the loaded organic stream by contacting with water in another countercurrent extraction step. In place of water, an aqueous alkafl can be used to recover a purified phosphate salt solution. A small portion of the purified acid is typically used in a backwashing operation to contact the loaded organic phase and to improve the purity of the extract phase prior to recovery of the purified acid. Depending on the miscibility of the solvent with the acid, the purified acid and the raffinate may be stripped of residual solvent which is recycled to the extraction loop. The purified acid can be treated for removal of residual organic impurities, stripped of fluoride to low (10 ppm) levels, and concentrated to the desired P2 s Many variations of this basic scheme have been developed to improve the extraction of phosphate and rejection of impurities to the raffinate stream, and numerous patents have been granted on solvent extraction processes. [Pg.328]

In a subsequent product work-up, the sulfates are hydrolyzed and the acid is removed by water extraction (206,207). In the extraction step, most water-soluble short polyether chains are also removed, and the molecular weight distribution becomes narrower, from close to the theoretical value... [Pg.364]

Modem catalysts produce a much higher percentage of isotactic polypropylene than ia the past, eliminating the need for a cosdy extraction step to remove an atactic fraction. Yields ate high enough (>10,000 g polymer/g catalyst) so that a catalyst removal (de-ashing) step is no longer requited. [Pg.438]

Numerous high pressure Hquid chromatographic techniques have been reported for specific sample forms vegetable oHs (55,56), animal feeds (57,58), seta (59,60), plasma (61,62), foods (63,64), and tissues (63). Some of the methods requite a saponification step to remove fats, to release tocopherols from ceHs, and/or to free tocopherols from their esters. AH requite an extraction step to remove the tocopherols from the sample matrix. The methods include both normal and reverse-phase hplc with either uv absorbance or fluorescence detection. AppHcation of supercritical fluid (qv) chromatography has been reported for analysis of tocopherols in marine oHs (65). [Pg.148]

Further Preparative Reactions. When pulps are to be used in the production of materials that do not retain the original fiber stmcture, such as rayon or ceUulose acetate film, the lignin, hemiceUulose, and other components must be reduced to the lowest possible concentrations. A surfactant (ionic or nonionic) is often added during a hot, weakly alkaline extraction step after chlorination. Another approach, sometimes used in addition to the surfactant step, is to treat the pulp with 6—10% NaOH after most of the oxidative bleaching is finished. This treatment removes most of the hemiceUulose. In most purification plants the final stage includes use of sulfuric acid chelators are optional. [Pg.238]

In summary, for systems of the ethanol—water—benzene type, the three most attractive sequences for carrying out azeotropic distHlation are the Kubierschky three-column sequence, the Kubierschky two-column sequence, and the Ricard-AHenet three-column sequence. For each of these there is the added possibHity of putting a Hquid—Hquid extraction step after the azeo-column. [Pg.197]

The checkers encountered troublesome emulsions in the extraction step. It was found helpful to filter the acidified reaction mixture through a sintered-glass funnel before ether extraction. [Pg.12]

With this method, levels of 0.1 p.g 1 can be detected in ground water and, if an offline liquid-liquid extraction step is added, levels of 0.1 p.g 1 can be detected (48). [Pg.346]

LC-GC, therefore, shows promise for forensic science applications, reducing sample handling and preparation steps by essentially using an on-line LC column in place of one or more extraction steps. This is followed by a traditional high resolution GC analysis. The methods described here for pesticides and hormones could be readily adapted to a variety of analyses, especially those involving fatty matrices. Such as tissues, food or blood. [Pg.410]

Volatile impurities in an ionic liquid may have different origins. They may result from solvents used in the extraction steps during the synthesis, from unreacted starting materials from the allcylation reaction (to form the ionic liquid s cation), or from any volatile organic compound previously dissolved in the ionic liquid. [Pg.24]

The first application involving a catalytic reaction in an ionic liquid and a subsequent extraction step with SCCO2 was reported by Jessop et al. in 2001 [9]. These authors described two different asymmetric hydrogenation reactions using [Ru(OAc)2(tolBINAP)] as catalyst dissolved in the ionic liquid [BMIM][PFg]. In the asymmetric hydrogenation of tiglic acid (Scheme 5.4-1), the reaction was carried out in a [BMIM][PF6]/water biphasic mixture with excellent yield and selectivity. When the reaction was complete, the product was isolated by SCCO2 extraction without contamination either by catalyst or by ionic liquid. [Pg.282]

The process consists of a reactor section, continuous catalyst regeneration unit (CCR), and product recovery section. Stacked radial-flow reactors are used to minimize pressure drop and to facilitate catalyst recirculation to and from the CCR. The reactor feed consists solely of LPG plus the recycle of unconverted feed components no hydrogen is recycled. The liquid product contains about 92 wt% benzene, toluene, and xylenes (BTX) (Figure 6-7), with a balance of Cg aromatics and a low nonaromatic content. Therefore, the product could be used directly for the recovery of benzene by fractional distillation (without the extraction step needed in catalytic reforming). [Pg.178]

The usual aromatic bromination are performed by free bromine in the presence of a catalyst, most often iron. However, liquid bromine is not easy to handle because of its volatile and toxic character. On the other hand, alumina-supported copper(II) bromide can be treated easily and safely as a solid brominating reagent for aromatic compounds. The advantages of this procedure using the solid reagent are simple workups, mild conditions, and higher selectivities. Products can be isolated in good yield by simple filtration and solvent evaporation, and no extraction steps are required. [Pg.26]

Initial Situation A product contains three active components that up to a certain point in time were identified using TLC. Quantitation was done by means of extraction/photometry. Trials to circumvent the time-consuming extraction steps by quantitative TLC (diffuse reflection mode) had been started but were discontinued due to reproducibility problems. The following options were deemed worthy of consideration ... [Pg.180]

A normal-phase HPLC separation seems to be useful to separate major chlorophyll derivatives, but it is not compatible with samples in water-containing solvents an additional extraction step is required to eliminate water from the extract since its presence rednces chromatographic resolution and interferes with retention times. Besides that, the analysis cannot be considered quantitative due to the difhculty in transferring componnds from the acetone solution into the ether phase. On the other hand, an advantage of the normal-phase method is its efficacy to separate magne-sinm-chlorophyll chelates from other metal-chelated chlorophyll derivatives. ... [Pg.433]

Temperature-Controlled Residuiun Oil Supercritical Extraction (ROSE) The Kerr-McCee ROSE process has been used worldwide for over two decades to remove asphaltenes from oil. The extraction step uses a hquid solvent that is recovered at supercritical conditions to save energy as shown in Fig. 20-21. The residuum is contacted with butane or pentane to precipitate the heavy asphaltene fraction. The extract is then passed through a series of heaters, where it goes from the liquid state to a lower-density SCF state. Because the entire process is carried out at conditions near the critical point, a relatively small temperature change is required to produce a fairly large density change. After the light oils have been removed, the solvent is cooled back to the liquid state and recycled. [Pg.16]

To validate the analytical procedure recovery experiments are performed. To this end, the CRM is spiked with a known mass of the analytes at a variety of concentration levels (at least three different levels) and the concentrations measured are compared to the expected concentrations in at least three separate experiments. The extraction step has been shown to be a critical step in the analytical procedure and it may be responsible for poor recoveries. The efficiency of this step can be assessed either by repetitive extraction of the sample or by the addition of internal standards prior to the extraction step with the assumption that the latter actually represent the behavior of the analytes of interest. [Pg.100]

Here two components, the free phenol and the intact ester, are included in the residue definition. Usually, analytical methods for the determination of bromoxynil and its octanoate begin with hydrolysis during maceration of the sample. If those methods are validated, the sole fortification of the octanoate is sufficient. However, in other existing methods, hydrolysis follows a separate extraction step. In that case, the chosen solvent must be able to extract both compounds with equal efficiency. [Pg.98]

As discussed before, the efficiency of the extraction step is one of the fundamental performance characteristics of an analytical method. Unfortunately, the provisions regarding extraction efficiency in Council Directive 91/414/EEC (amended by Directive 96/68/EG) are listed in the metabolism section of the directive (Annex IIA 6.1 and 6.2). Nevertheless, results obtained in these studies are essential for the development of enforcement methods and must be reflected in this context. [Pg.110]

Kennedy et al. developed a lasalocid immunoassay for application to residues in chicken meat and liver samples. The antibody was specific and did not cross-react with salinomycin, maduramicin, or monensin. Sample preparation consisted of homogenization in aqueous acetonitrile, removal of fat from an aliquot of the aqueous acetonitrile by hexane extraction, and evaporation of acetonitrile. The sample was then reconstituted with assay buffer. Liver required an additional solid phase extraction step. The LOQ was 0.02 xgkg for muscle and 0.15 agkg for liver. These workers were able to use the system to determine the half-life of lasalocid in the tissues. [Pg.706]

The concept of SPME was first introduced by Belardi and Pawliszyn in 1989. A fiber (usually fused silica) which has been coated on the outside with a suitable polymer sorbent (e.g., polydimethylsiloxane) is dipped into the headspace above the sample or directly into the liquid sample. The pesticides are partitioned from the sample into the sorbent and an equilibrium between the gas or liquid and the sorbent is established. The analytes are thermally desorbed in a GC injector or liquid desorbed in a liquid chromatography (LC) injector. The autosampler has to be specially modified for SPME but otherwise the technique is simple to use, rapid, inexpensive and solvent free. Optimization of the procedure will involve the correct choice of phase, extraction time, ionic strength of the extraction step, temperature and the time and temperature of the desorption step. According to the chemical characteristics of the pesticides determined, the extraction efficiency is often influenced by the sample matrix and pH. [Pg.731]

The extraction procedure begins the process to separate the analytes from the matrix and present the material in a form that can be more easily analyzed. The type of extraction step that is used for a particular matrix depends on the nature of the matrix and analytes. There are two competing views in the extraction process among chemists. Some prefer to extract the analytes exhaustively from the matrix and rely on extensive cleanup to remove matrix co-extractives. Others prefer the just enough extraction concept, in which the selectivity of the extraction process is honed as much as possible... [Pg.754]


See other pages where Extraction step is mentioned: [Pg.542]    [Pg.755]    [Pg.78]    [Pg.474]    [Pg.328]    [Pg.343]    [Pg.25]    [Pg.360]    [Pg.248]    [Pg.2003]    [Pg.274]    [Pg.37]    [Pg.350]    [Pg.272]    [Pg.286]    [Pg.50]    [Pg.88]    [Pg.50]    [Pg.433]    [Pg.55]    [Pg.757]    [Pg.773]   
See also in sourсe #XX -- [ Pg.970 ]




SEARCH



Extractions, multi-step

Solid phase extraction steps

Solvent extraction equilibrium steps involved

Solvent extraction, mass transport steps

Steps Following Extraction

© 2024 chempedia.info