Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic absorption spectrometry nickel

Arsenic and inorganic compounds of arsenic in air (atomic absorption spectrometry). Nickel and inorganic compounds of nickel in air. [Pg.378]

I have carried out widespread studies on the application of a sensitive and selective preconcentration method for the determination of trace a mounts of nickel by atomic absorption spectrometry. The method is based on soi ption of Cu(II) ions on natural Analcime Zeolit column modified with a new Schiff base 5-((4-hexaoxyphenylazo)-N-(n-hexyl-aminophenyl)) Salicylaldimine and then eluted with O.IM EDTA and determination by EAAS. Various parameters such as the effect of pH, flow rate, type and minimum amount of stripping and the effects of various cationic interferences on the recovery of ions were studied in the present work. [Pg.51]

Aqueous standard solutions are a source of certain difficulties In electrothermal atomic absorption spectrometry of trace metals In biological fluids The viscosities and surface tensions of aqueous standard solutions are substantially less than the viscosities and surface tensions of serum, blood and other proteln-contalnlng fluids These factors Introduce volumetric disparities In pipetting of standard solutions and body fluids, and also cause differences In penetration of these liquids Into porous graphite tubes or rods Preliminary treatment of porous graphite with xylene may help to minimize the differences of liquid penetration (53,67) A more satisfactory solution of this problem Is preparation of standards In aqueous solutions of metal-free dextran (50-60 g/llter), as first proposed by Pekarek et al ( ) for the standardization of serum chromium analyses This practice has been used successfully by the present author for standardization of analyses of serum nickel The standard solutions which are prepared In aqueous dextran resemble serum In regard to viscosity and surface tension Introduction of dextran-contalnlng standard solutions Is an Important contribution to electrothermal atomic absorption analysis of trace metals In body fluids. [Pg.255]

Hohnadel, D. C., Sunderman, F. W., Jr., Nechay, M. W., and McNeely, M. D. "Atomic Absorption Spectrometry of Nickel, Copper, Zinc, and Lead In Sweat from Healthy Subjects during Sauna Bathing". Clin. Chem. (1973), 19, 1288-1292. [Pg.265]

Backmank S, Karlsson RW (1979) Determination of lead, bismuth, zinc, silver and antimony in steel and nickel-base alloys by atomic-absorption spectrometry using direct atomization of solid samples in a graphite furnace. Analyst 104 1017-1029. [Pg.148]

Brown SS, Nomoto S, Stoeppler M, Sunderman FW Jr (1981) lUPAC reference method for analysis of nickel in serum and urine by electrothermal atomic absorption spectrometry. Clin Biochem 14 295-299. [Pg.148]

Acar 0, Kn ic Z, Turker AR (1999) Determination of bismuth, indium and lead in geological and sea-water samples by electrothermal atomic absorption spectrometry with nickel containing chemical modifiers. Anal Chim Acta 382 329-338. [Pg.277]

Xu Y, Liang Y. 1997. Combined nickel and phosphate modifier for lead determination in water by electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 12(4) 471-474. [Pg.588]

Mercury was determined after suitable digestion by the cold vapour atomic absorption method [40]. Lead was determined after digestion by a stable isotope dilution technique [41-43]. Copper, lead, cadmium, nickel, and cobalt were determined by differential pulse polarography following concentration by Chelex 100 ion-exchange resin [44,45], and also by the Freon TF extraction technique [46]. Manganese was determined by flameless atomic absorption spectrometry (FAA). [Pg.34]

The following analytical techniques seem to be adequate for the concentrations under consideration copper and nickel by Freon extraction and FAA cold vapour atomic absorption spectrometry, cobalt by Chelex extraction and differential pulse polarography, mercury by cold vapour atomic absorption absorptiometry, lead by isotope dilution plus clean room manipulation and mass spectrometry. These techniques may be used to detect changes in the above elements for storage tests Cu at 8 nmol/kg, Ni at 5 nmol/kg, Co at 0.5 nmol/kg, Hg at 0.1 nmol/kg, and Pb at 0.7 nmol/kg. [Pg.36]

Rampon and Cavelier [523] used atomic absorption spectrometry to determine down to 0.5 xg/l nickel in seawater. Nickel is extracted into chloroform from seawater (500 ml) at pH 9-10, as its dimethylglyoxime complex. Several extractions and a final washing of the aqueous phase with carbon tetrachloride... [Pg.207]

Neve et al. [547] digested the sample with nitric acid. After digestion the sample is reacted selectively with an aromatic o-diamine, and the reaction product is detected by flameless atomic absorption spectrometry after the addition of nickel (III) ions. The detection limit is 20mg/l, and both selenium (IV) and total selenium can be determined. There was no significant interference in a saline environment with three times the salinity of seawater. [Pg.219]

Armannsson [659] has described a procedure involving dithizone extraction and flame atomic absorption spectrometry for the determination of cadmium, zinc, lead, copper, nickel, cobalt, and silver in seawater. In this procedure 500 ml of seawater taken in a plastic container is exposed to a 1000 W mercury arc lamp for 5-15 h to break down metal organic complexes. The solution is adjusted to pH 8, and 10 ml of 0.2% dithizone in chloroform added. The 10 ml of chloroform is run off and after adjustment to pH 9.5 the aqueous phase is extracted with a further 10 ml of dithizone. The combined extracts are washed with 50 ml of dilute ammonia. To the organic phases is added 50 ml of 0.2 M-hydrochloric acid. The phases are separated and the aqueous portion washed with 5 ml of chloroform. The aqueous portion is evaporated to dryness and the residue dissolved in 5 ml of 2 M hydrochloric acid (solution A). Perchloric acid (3 ml) is added to the organic portion, evaporated to dryness, and a further 2 ml of 60% perchloric acid added to ensure that all organic matter has been... [Pg.237]

Chakraborti et al. [665] determined cadmium, cobalt, copper, iron, nickel, and lead in seawater by chelation with diethyldithiocarbamate from a 500 ml sample, extraction into carbon tetrachloride, evaporation to dryness, and redissolution in nitric acid prior to determination by electrothermal atomic absorption spectrometry in amounts ranging from 10 pg (cadmium) to 250 pg (nickel). [Pg.239]

Tony et al. [951] have discussed an online preconcentration flame atomic absorption spectrometry method for determining iron, cobalt, nickel, magnesium, and zinc in seawater. A sampling rate of 30 samples per hour was achieved and detection limits were 4.0,1.0,1.0,0.5, and 0.5 xg/l, for iron, cobalt, nickel, magnesium, and zinc, respectively. [Pg.239]

Chang et al. [952] used a miniature column packed with a chelating resin and an automatic online preconcentration system for electrothermal atomic absorption spectrometry to determine cadmium, cobalt, and nickel in seawater. Detection limits of 0.12,7 and 35 ng/1 were achieved for cadmium, cobalt, and nickel, respectively, with very small sample volume required (400-1800 xl). [Pg.240]

Boyle and Edmond [679] determined copper, nickel, and cadmium in 100 ml of seawater by coprecipitation with cobalt pyrrolidine dithiocarba-mate and graphite atomiser atomic absorption spectrometry. Concentration ranges likely to be encountered and estimated analytical precisions (lcr) are l-6nmol/kg ( 0.1) for copper, 3-12nmol/kg ( 0.3) for nickel, and 0.0-1.1 nmol/kg ( 0.1) for cadmium. [Pg.243]

Brugmann et al. [680] compared three methods for the determination of copper, cadmium, lead, nickel, and zinc in North Sea and northeast Atlantic waters. Two methods consisted of atomic absorption spectroscopy but with preconcentration using either freon or methyl isobutyl ketone, and anodic stripping voltammetry was used for cadmium, copper, and lead only. Inexplicable discrepancies were found in almost all cases. The exceptions were the cadmium results by the two atomic absorption spectrometric methods, and the lead results from the freon with atomic absorption spectrometry and anodic scanning voltammetric methods. [Pg.243]

Bruland et al. [122] have shown that seawater samples collected by a variety of clean sampling techniques yielded consistent results for copper, cadmium, zinc, and nickel, which implies that representative uncontaminated samples were obtained. A dithiocarbamate extraction method coupled with atomic absorption spectrometry and flameless graphite furnace electrothermal atomisation is described which is essentially 100% quantitative for each of the four metals studied, has lower blanks and detection Emits, and yields better precision than previously published techniques. A more precise and accurate determination of these metals in seawater at their natural ng/1 concentration levels is therefore possible. Samples analysed by this procedure and by concentration on Chelex 100 showed similar results for cadmium and zinc. Both copper and nickel appeared to be inefficiently removed from seawater by Chelex 100. Comparison of the organic extraction results with other pertinent investigations showed excellent agreement. [Pg.243]

Mykytiuk et al. [184] have described a stable isotope dilution sparksource mass spectrometric method for the determination of cadmium, zinc, copper, nickel, lead, uranium, and iron in seawater, and have compared results with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. These workers found that to achieve the required sensitivity it was necessary to preconcentrate elements in the seawater using Chelex 100 [121] followed by evaporation of the desorbed metal concentrate onto a graphite or silver electrode for isotope dilution mass spectrometry. [Pg.287]

Willie et al. [17] used the hydride generation graphite furnace atomic absorption spectrometry technique to determine selenium in saline estuary waters and sea waters. A Pyrex cell was used to generate selenium hydride which was carried to a quartz tube and then a preheated furnace operated at 400 °C. Pyrolytic graphite tubes were used. Selenium could be determined down to 20 ng/1. No interference was found due to, iron copper, nickel, or arsenic. [Pg.334]

Klenke et al. [5] described a technique for extraction of humic and fulvic acids from stream sediments and outlined methods for their determination. By means of flame atomic absorption spectrometry, the levels of environmentally important heavy metals (cadmium, copper, chromium, cobalt, nickel and lead) in the fulvic and humic acid extracts were compared with those in the original sediment samples. The pattern distribution of the respective metals in the two cases showed very close agreement, suggesting that the combined extract of humic and fulvic acids could be used as an indicator of the level of heavy metal pollution in flowing waters. [Pg.283]

Atomic absorption spectrometry, EPR spectroscopy and inductively coupled plasma (ICP) analysis had shown that the D. gigas hydrogenase contains one nickel and twelve ( 1) iron atoms, eleven of which are distributed among the three [FeS] clusters. This strongly suggested that the remaining twelfth iron atom could be one of the two metal ions revealed by the active site electron density. To verify this... [Pg.116]

Nickel is normally present at very low levels in biological samples. To determine trace nickel levels in these samples accurately, sensitive and selective methods are required. Atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES), with or without preconcentration or separation steps, are the most common methods. These methods have been adopted in standard procedures by EPA, NIOSH, lARC, and the International Union of Pure and Applied... [Pg.207]

AAS = atomic absorption spectrometry HCLO4 = perchloric acid HNO3 = nitric acid H2SO4 = sulfuric acid ICP-AES = inductively coupled plasma-atomic emission spectroscopy Ni = nickel NIOSH = National Institute for Occupational Safety and Health v = volume... [Pg.209]

The following blank-corrected readings were obtained for the determination of nickel in steel, using nickel standards dissolved in iron solution (10 g k ). The determination was performed by atomic absorption spectrometry using an air-acetylene flame and the 232 nm nickel line. [Pg.161]

M. C. Yebra, S. Cancela and R. M. Cespon, Automatic determination of nickel in foods by flame atomic absorption spectrometry. Food Chem., 108(2), 2008, 774-778. [Pg.145]

M. A. Bezerra, A. L. B. Conceicao and S. L. C. Ferreira, Doehlert matrix for optimisation of procedure for determination of nickel in saline oil-refinery effluents by use of flame atomic absorption spectrometry after preconcentration by cloud-point extraction. Anal. Bioanal. Chem., 378(3), 2004, 798-803. [Pg.148]

M. T. Siles Cordero, E. I. Vereda Alonso, P. Canada Rudner, A. Garcia de Torres and J. M. Cano Pavon, Computer-assisted simplex optimisation of an on-line preconcentration system for determination of nickel in seawater by electrothermal atomic absorption spectrometry, J. Anal. At. Spectrom., 14(7), 1999, 1033-1037. [Pg.158]

Sunderman, F.W., Jr. Measurements of Nickel in Biological Materials by Atomic Absorption Spectrometry, Amer. J. Clin. Path., 44, 182 (1965). [Pg.1074]

The less common elements in coal ash (e.g., beryllium, chromium, copper, manganese, nickel, lead, vanadium, zinc, and cadmium) can also be determined using atomic absorption (ASTM D-3683). In the test method, the ash is dissolved by mineral acids, and the individual elements determined by atomic absorption spectrometry. [Pg.102]

Coal contains several elements whose individual concentrations are generally less than 0.01%. These elements are commonly and collectively referred to as trace elements. These elements occur primarily as part of the mineral matter in coal. Hence, there is another standard test method for determination of major and minor elements in coal ash by ICP-atomic emission spectrometry, inductively coupled plasma mass spectrometry, and graphite furnace atomic absorption spectrometry (ASTM D-6357). The test methods pertain to the determination of antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, vanadium, and zinc (as well as other trace elements) in coal ash. [Pg.105]

Standard official methods have been described for the determination of nitric-perchloric acid-soluble nickel [174] and acetic acid-extractable nickel [175] in soil. To determine nitric acid-perchloric acid-soluble nickel [174], the acid digest is dissolved in hydrochloric acid and the nickel is determined by atomic absorption spectrometry. To determine extractable nickel, the nickel is first extracted from the soil with 0.5 M acetic acid and the nickel is then converted to the ammonium pyrrolidine dithiocarbamate complex. Extraction of the complex with chloroform provides an extract for the determination of nickel by atomic absorption spectrometry. [Pg.49]

The determination of nickel is also discussed under Multi-Metal Analysis of Soils in Sects. 2.55 (atomic absorption spectrometry), and 2.55 (inductively coupled plasma mass spectrometry), 2.55 (differential pulse anodic stripping voltammetry), 2.55 (photon activation analysis), 2.55 (emission spectrometry) and 2.55 (neutron activation analysis). [Pg.49]

Long, X., M. Miro, R. Jensen, and E.H. Hansen. 2006. Highly selective micro-sequential injection lab-on-valve (pSI-LOV) method for the determination of ultra-trace concentrations of nickel in saline matrices using detection by electrothermal atomic absorption spectrometry. Anal. Bioanal. Chem. 386 739-748. [Pg.470]

R. C. Campos, A. J, Curtius, H. Bemdt, Combustion and volatilisation of solid samples for direct atomic absorption spectrometry using silica or nickel tube furnace atomisers, J. Anal. Atom. Spectrom., 5 (1990), 669-673. [Pg.430]


See other pages where Atomic absorption spectrometry nickel is mentioned: [Pg.319]    [Pg.362]    [Pg.248]    [Pg.319]    [Pg.362]    [Pg.241]    [Pg.242]    [Pg.245]    [Pg.259]    [Pg.117]    [Pg.365]   
See also in sourсe #XX -- [ Pg.365 ]




SEARCH



Absorption spectrometry

Atomic absorption spectrometry

Atomic absorption spectrometry atomizers

Nickel atoms

© 2024 chempedia.info