Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel atom

The reaction of a mixture of 1,5,9-cyclododecatriene (CDT), nickel acetylacetonate [3264-82-2], and diethylethoxyalurninum in ether gives red, air-sensitive, needle crystals of (CDT)Ni [12126-69-1] (66). Crystallographic studies indicate that the nickel atom is located in the center of the 12-membered ring of (CDT)Ni (104). The latter reacts readily with 1,5-cyclooctadiene (COD) to yield bis(COD) nickel [1295-35-8] which has yellow crystals and is fairly air stable, mp 142°C (dec) (20). Bis(COD)nickel also can be prepared by the reaction of 1,5-COD, triethylaluminum, and nickel acetylacetonate. [Pg.12]

Figure 27.13 The triple-decker sandwich cation, [Ni2(>j -C5H5)3]+. Note that the C5H5 rings are neither staggered nor eclipsed , and the nickel atoms are closer to the outer than to the central ring. Figure 27.13 The triple-decker sandwich cation, [Ni2(>j -C5H5)3]+. Note that the C5H5 rings are neither staggered nor eclipsed , and the nickel atoms are closer to the outer than to the central ring.
If it is assumed that 2,2 -bipyridine is bonded to the catalyst by both nitrogen atoms, then the position of the chemisorbed molecule on the metal is rigidly fixed. Unless two molecules of this base can be adsorbed at the required distance from each other and in an arrangement which is close to linear, overlap of the uncoupled electrons at the a-position cannot occur. The failure to detect any quaterpyridine would then indicate that nickel atoms of the required orientation are rarely, if ever, available. Clearly the probability of carbon-carbon bond formation is greater between one chemisorbed molecule of 2,2 -bipyridine and one of pyridine, as the latter can correct its orientation relative to the fixed 2,2 -bipyridine by rotation around the nitrogen-nickel bond, at least within certain limits. [Pg.198]

H. Basch, M. D. Newton and J. W. Moskowitz, The electronic structure of small nickel atom clusters , J. Chem. Phys. 73 4492 (1980). [Pg.266]

The symbol [Ne] indicates that the first 10 electrons in the sulfur atom have the neon configuration ls22s22p6 similarly, [Ar] represents the first 18 electrons in the nickel atom. [Pg.145]

The ionic current intensity corresponding to the peak at 169 amu was analyzed under isothermal and polythermal conditions [383]. It was found that in a gaseous atmosphere, the intensity changes are in correlation with the CO content and in negative correlation with the C02 content. The presence of CO in vacuum systems equipped with heating elements is usually related to thermo-cycling and desorption of CO by nickel atoms [386]. Based on the above, the presence of NbF4+ ions in mass spectra is most probably related to the niobium reduction process, which can be represented as follows ... [Pg.211]

A proton (H+) is an electron pair acceptor. It is therefore a Lewis acid because it can attach to ( accept") a lone pair of electrons on a Lewis base. In other words, a Bronsted acid is a supplier of one particular Lewis acid, a proton. The Lewis theory is more general than the Bronsted-Lowry theory. For instance, metal atoms and ions can act as Lewis acids, as in the formation of Ni(CO)4 from nickel atoms (the Lewis acid) and carbon monoxide (the Lewis base), but they are not Bronsted acids. Likewise, a Bronsted base is a special kind of Lewis base, one that can use a lone pair of electrons to form a coordinate covalent bond to a proton. For instance, an oxide ion is a Lewis base. It forms a coordinate covalent bond to a proton, a Lewis acid, by supplying both the electrons for the bond ... [Pg.518]

An obvious refinement of the simple theory for cobalt and nickel and their alloys can be made which leads to a significant increase in the calculated value of the Curie temperature. The foregoing calculation for nickel, for example, is based upon the assumption that the uncoupled valence electrons spend equal amounts of time on the nickel atoms with / = 1 and the nickel atoms with J = 0. However, the stabilizing interaction of the spins of the valence electrons and the parallel atomic moments would cause an increase in the wave function for the valence electrons in the neighborhood of the atoms with / = 1 and the parallel orientation. This effect also produces a change in the shape of the curve of saturation magnetization as a function of temperature. The details of this refined theory will be published later. [Pg.764]

Nickel atoms have also been allowed to react with C2H4 under cryogenic conditions (101,123). Depending on the metal-concentration conditions and the deposition temperature, either mononuclear species, Ni(C2H4) , n = 1-3(123), or multinuclear species, Ni2(C2H4) ,m = 1-2, and Ni3(CjH4)i, may be isolated. Unlike the copper complexes, these species are all colorless the mononuclear ethylene complexes each dis-... [Pg.122]

Nickel and palladium react with a number of olefins other than ethylene, to afford a wide range of binary complexes. With styrene (11), Ni atoms react at 77 K to form tris(styrene)Ni(0), a red-brown solid that decomposes at -20 °C. The ability of nickel atoms to coordinate three olefins with a bulky phenyl substituent illustrates that the steric and electronic effects (54,141) responsible for the stability of a tris (planar) coordination are not sufficiently great to preclude formation of a tris complex rather than a bis (olefin) species as the highest-stoichiometry complex. In contrast to the nickel-atom reaction, chromium atoms react (11) with styrene, to form both polystyrene and an intractable material in which chromium is bonded to polystyrene. It would be interesting to ascertain whether such a polymeric material might have any catal3dic activity, in view of the current interest in polymer-sup-ported catalysts (51). [Pg.149]

Although, as has already been mentioned, under matrix conditions between 10 and 77 K, there is no oxidative addition of a chloroolefin to nickel or palladium atoms (141), it is evident that this is simply a function of reaction and processing conditions, as it has been shown (68) that oxidative addition to C-C or C-H bonds by nickel atoms leads to pseudocomplexes having Ni C H ratios of 2-5 1 2. Klabunde and co-workers investigated the oxidative addition-reactions of palladium atoms with alkyl halides (73) and benzyl chlorides (74). [Pg.158]

In addition, Lagowski and Simons showed (80) that the black, nickel-containing substances produced by the cocondensation of nickel atoms and alkynes are active, homogeneous catalysts for the oligomerization of terminal acetylenes under mild conditions. Table XVIII shows the yields of the oligomerization of propylene by these catalysts. [Pg.163]

The cocondensation of nickel atoms and CS2 at 12 K resulted in the formation of three binary, mononuclear, nickel/CS complexes, NKCSjln, n = 1-3 (145). Mixed CS2/ CS2 isotopes were used to identify the lowest stoichiometry species. An interpretation of the IR and UV-visible spectra, as well as normal-coordinate analyses (144), suggested that these species are best considered as normal 7r-complexes, with the nickel atom coordinated to the C=S bond in a manner analogous to C=C bond coordination (123). [Pg.163]

A crystal-structure determination on [Ni(PhCH2CS2)2] showed evidence of a Ni-Ni bond (Ni—Ni distance, 256 pm) in a bridging, acetate-cage, binuclear complex (363). Each nickel atom is 5-coordinate and is in a tetragonally distorted, square-pyramid spectroscopic evidence for a Ni-Ni bond has been obtained (364). The polarized crystal spectra showed more bands than predicted for a mononuclear, diamagnetic, square-planar nickel(Il), and the spectra are indicative of substantial overlap of the d-orbitals between the two nickel atoms. The bis(dithiobenzation)nickeKII) complex was found to exhibit unusual spectrochemical behavior (365). [Pg.258]

Nickel atoms in BajNi B form distorted, puckered 3.6.3.6-kagome nets stacked in six layers perpendicular to the c axis. The densely packed framework of trigonal-Ni prisms again result in boron-pair formation, although Ba atoms are too large to be sandwiched between two Ni layers, and only four Ba can be accommodated within six Ni layers. Superconductivity is found for ( a, Sr, Ba)2pt9Bg borides with a structure related to Ba2Ni9Bfi and e o,B2 however, with respect to crystal chemistry and boron coordination, only the subcell is derived so far. [Pg.159]


See other pages where Nickel atom is mentioned: [Pg.168]    [Pg.9]    [Pg.260]    [Pg.218]    [Pg.1157]    [Pg.1157]    [Pg.215]    [Pg.166]    [Pg.16]    [Pg.190]    [Pg.196]    [Pg.197]    [Pg.198]    [Pg.199]    [Pg.330]    [Pg.465]    [Pg.127]    [Pg.222]    [Pg.227]    [Pg.311]    [Pg.348]    [Pg.91]    [Pg.115]    [Pg.123]    [Pg.124]    [Pg.124]    [Pg.145]    [Pg.148]    [Pg.168]    [Pg.256]    [Pg.258]    [Pg.259]    [Pg.34]    [Pg.34]    [Pg.393]   
See also in sourсe #XX -- [ Pg.99 ]

See also in sourсe #XX -- [ Pg.3 , Pg.10 , Pg.10 , Pg.14 ]

See also in sourсe #XX -- [ Pg.3 , Pg.10 , Pg.10 ]

See also in sourсe #XX -- [ Pg.95 ]




SEARCH



Atomic absorption spectrometry nickel

Electrothermal atomization nickel

Nickel atom aggregation

Nickel atom cleaves

Nickel atom clustering

Nickel atom configurations

Nickel atom exchange

Nickel atom tetracarbonyl

Nickel atomic configuration

Nickel atomic energy levels

Nickel atomic processes

Nickel atomic properties

Nickel atomic weight

Nickel, atomic

Quantum mechanics nickel atom

© 2024 chempedia.info