Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions products

Given that the objective is to manufacture a certain product, there are often a number of alternative reaction paths to that product. Reaction paths which use the cheapest raw materials and produce the smallest quantities of byproducts are to be preferred. Reaction paths which produce significant quantities of unwanted byproducts should especially be avoided, since they create significant environmental problems. [Pg.16]

Reaction of triethylsilane with a, /3-unsaturated aldehydes catalyzed by Pd on carbon gives a /raff5-l,4-adduct as the main product. Reaction of acrolein gave the adduct in 86% yield, in which the 1,4-adduct 48 was 97% and the 1,2-adduct was 3%[44]. [Pg.517]

In practice side reactions intervene to reduce the efficiency of the propagation steps The chain sequence is interrupted whenever two odd electron species combine to give an even electron product Reactions of this type are called chain terminating steps Some commonly observed chain terminating steps m the chlorination of methane are shown m the following equations... [Pg.173]

The main intermediates in the pentaerythritol production reaction have been identified and synthesized (50,51) and the intermediate reaction mechanisms deduced. Without adequate reaction control, by-product formation can easily occur (52,53). Generally mild reaction conditions are favored for optimum results (1,54). However, formation of by-products caimot be entirely eliminated, particularly dipentaerytbritol and the linear formal of pentaerythritol, 2,2 -[meth5lenebis(oxymethylene)]bis(2-hydroxymethyl-1,3-propanediol) [6228-26-8] ... [Pg.465]

The highly exothermic nature of the butane-to-maleic anhydride reaction and the principal by-product reactions require substantial heat removal from the reactor. Thus the reaction is carried out in what is effectively a large multitubular heat exchanger which circulates a mixture of 53% potassium nitrate [7757-79-1/, KNO 40% sodium nitrite [7632-00-0], NaN02 and 7% sodium nitrate [7631-99-4], NaNO. Reaction tube diameters are kept at a minimum 25—30 mm in outside diameter to faciUtate heat removal. Reactor tube lengths are between 3 and 6 meters. The exothermic heat of reaction is removed from the salt mixture by the production of steam in an external salt cooler. Reactor temperatures are in the range of 390 to 430°C. Despite the rapid circulation of salt on the shell side of the reactor, catalyst temperatures can be 40 to 60°C higher than the salt temperature. The butane to maleic anhydride reaction typically reaches its maximum efficiency (maximum yield) at about 85% butane conversion. Reported molar yields are typically 50 to 60%. [Pg.455]

Generally, the sulfonation of naphthalene leads to a mixture of products. Naphthalene sulfonation at less than ca 100°C is kineticaHy controlled and produces predominandy 1-naphthalenesulfonic acid (4). Sulfonation of naphthalene at above ca 150°C provides thermodynamic control of the reaction and 2-naphthalenesulfonic acid as the main product. Reaction conditions for the sulfonation of naphthalene to yield desired products are given in Figure 1 alternative paths are possible. A Hst of naphthalenesulfonic acids and some of their properties is given in Table 1. [Pg.489]

The zwitterion (6) can react with protic solvents to produce a variety of products. Reaction with water yields a transient hydroperoxy alcohol (10) that can dehydrate to a carboxyUc acid or spHt out H2O2 to form a carbonyl compound (aldehyde or ketone, R2CO). In alcohoHc media, the product is an isolable hydroperoxy ether (11) that can be hydrolyzed or reduced (with (CH O) or (CH2)2S) to a carbonyl compound. Reductive amination of (11) over Raney nickel produces amides and amines (64). Reaction of the zwitterion with a carboxyUc acid to form a hydroperoxy ester (12) is commercially important because it can be oxidized to other acids, RCOOH and R COOH. Reaction of zwitterion with HCN produces a-hydroxy nitriles that can be hydrolyzed to a-hydroxy carboxyUc acids. Carboxylates are obtained with H2O2/OH (65). The zwitterion can be reduced during the course of the reaction by tetracyanoethylene to produce its epoxide (66). [Pg.494]

Acetaldehyde can be used as an oxidation-promoter in place of bromine. The absence of bromine means that titanium metallurgy is not required. Eastman Chemical Co. has used such a process, with cobalt as the only catalyst metal. In that process, acetaldehyde is converted to acetic acid at the rate of 0.55—1.1 kg/kg of terephthahc acid produced. The acetic acid is recycled as the solvent and can be isolated as a by-product. Reaction temperatures can be low, 120—140°C, and residence times tend to be high, with values of two hours or more (55). Recovery of dry terephthahc acid follows steps similar to those in the Amoco process. Eastman has abandoned this process in favor of a bromine promoter (56). Another oxidation promoter which has been used is paraldehyde (57), employed by Toray Industries. This leads to the coproduction of acetic acid. 2-Butanone has been used by Mobil Chemical Co. (58). [Pg.488]

In the context of commercial silane production, these frequendy lead to by-product reactions, as for example the production of allyl dim ethyl sil a n e by a Grignard route (see Grignard reactions). [Pg.28]

Process considerations must not only take into account characteristics of the particular alcohol or phenol to be esterified, but also the self-propagating by-product reaction, which results in polymer formation. [Pg.39]

Oil Contamination of Helium Gas. For more than 20 years, helium gas has been used in a variety of nuclear experiments to collect, carry, and concentrate fission-recoil fragments and other nuclear reaction products. Reaction products, often isotropically distributed, come to rest in helium at atmospheric concentration by coUisional energy exchange. The helium is then allowed to flow through a capillary and then through a pinhole into a much higher vacuum. The helium thus collects, carries, and concentrates products that are much heavier than itself, electrically charged or neutral, onto a detector... [Pg.367]

The SRC-II process, shown in Figure 2, was developed in order to minimise the production of soHds from the SRC-I coal processing scheme. The principal variation of the SRC-II process relative to SRC-I was incorporation of a recycle loop for the heavy ends of the primary Hquefaction process. It was quickly realized that minerals which were concentrated in this recycle stream served as heterogeneous hydrogenation catalysts which aided in the distillate production reactions. In particular, pyrrhotites, non stoichiometric iron sulfides, produced by reduction of iron pyrite were identified as being... [Pg.281]

Nitration Hazards arise from the strong oxidizing nature of the nitrating agents used (e.g. mixture of nitric and sulphuric acids) and from the explosive characteristics of some end products Reactions and side reactions involving oxidation are highly exothermic and may occur rapidly Sensitive temperature control is essential to avoid run-away... [Pg.249]

It should be noted that positional selectivity is never complete even when a clean reaction gives only one isolated product.Reaction occurs at all positions in proportion to the ratio of the rate constants. The difference between a clean reaction (e.g., rate 9 times that of a competing reaction) and one giving a troublesome mixture can be merely a moderate quantitative increase in one rate (e.g., to a 9 7 rate ratio) or a change in both rates (e.g., to a 3 4 ratio). Work such as that of Kauffmann and Boettcher on heteroarynes illustrates the potential of modern forms of chromatography for determining the true proportion of even very minor products. [Pg.265]

Alteration of the relative reactivity of the ring-positions of quinoline is expected and observed when cyclic transition states can intervene. Quinoline plus phenylmagnesium bromide (Et20,150°, 3 hr) produces the 2-phenyl derivative (66% yield) phenyllithium gives predominantly the same product along with a little of the 4-phenylation product. Reaction of butyllithium (Et 0, —35°, 15 min) forms 2-butylquinoline directly in 94% yield. 2-Aryl- or 6-methoxy-quinolines give addition at the 2-position with aryllithium re-agents, and reaction there is so favored that appreciable substitution (35%) takes place at the 2-position even in the 4-chloroquinoline 414. Hydride reduction at the 2-position of quinoline predominates. Reaction of amide ion at the 2-position via a cyclic... [Pg.365]

Substrate Alkylating Products Reaction Isomers Ratio Yield Ref... [Pg.881]

Substrate Alkylating Agent Products Reaction Mode Isomers Ratio Yield (%) Ref... [Pg.883]

Rearrangements have been included in which sulfones participate not only as reactants but also as products. Reactions have been classified according to mechanism, but although the main emphasis has been on mechanism and stereochemistry, special attention to synthetic applications has also been given, wherever appropriate. Obviously, due to space limitations as well as the vast amount of work available, only selected and representative results of general importance, as judged by the concern of the reviewer, are presented below. Thus, the exclusion of a particular piece of work in no way passes judgement on its scientific value. [Pg.666]

Rearrangements have been included in which sulfoxides participate not only as reactants but also as products. Reactions have been classified according to mechanism, but although the main emphasis has been on mechanism and stereochemistry, special attention to synthetic applications has also been given wherever appropriate. [Pg.718]

When the equilibrium composition is perturbed by adding or removing a reactant or product, reaction tends to occur in the direction that restores the value of Q to that of K. [Pg.500]

Hence, it is important to remember that the products, reaction mechanism and the rate of the process may depend on the history and pretreatment of the electrode and that, indeed, the activity of the electrode may change during the timescale of a preparative electrolysis. Certainly, the mechanism and products may depend on the solution conditions and the electrode potential, purely because of the effect of these parameters on the state of the electrode surface. [Pg.192]

As a strategy for the construction of cyclic ethers, the radical cyclization of jS-alkoxyacrylates was used for the preparation of czs-2,5-disubstituted tetrahy-drofurans and cis-2,6-disubstituted tetrahydropyrans. An example is given with S-alkoxymethacrylate 38 as precursor of the optically active benzyl ether of (+)-methyl nonactate, exclusively formed as the threo product (Reaction 44). ° ... [Pg.140]


See other pages where Reactions products is mentioned: [Pg.2060]    [Pg.2150]    [Pg.279]    [Pg.436]    [Pg.455]    [Pg.348]    [Pg.250]    [Pg.247]    [Pg.33]    [Pg.2004]    [Pg.182]    [Pg.46]    [Pg.133]    [Pg.177]    [Pg.177]    [Pg.1299]    [Pg.664]    [Pg.886]    [Pg.322]    [Pg.719]    [Pg.277]    [Pg.167]    [Pg.35]    [Pg.57]   
See also in sourсe #XX -- [ Pg.139 ]

See also in sourсe #XX -- [ Pg.139 ]

See also in sourсe #XX -- [ Pg.292 ]

See also in sourсe #XX -- [ Pg.292 ]




SEARCH



© 2024 chempedia.info