Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Graphite furnaces

A technique is any chemical or physical principle that can be used to study an analyte. Many techniques have been used to determine lead levels. For example, in graphite furnace atomic absorption spectroscopy lead is atomized, and the ability of the free atoms to absorb light is measured thus, both a chemical principle (atomization) and a physical principle (absorption of light) are used in this technique. Chapters 8-13 of this text cover techniques commonly used to analyze samples. [Pg.36]

Finally, analytical methods can be compared in terms of their need for equipment, the time required to complete an analysis, and the cost per sample. Methods relying on instrumentation are equipment-intensive and may require significant operator training. For example, the graphite furnace atomic absorption spectroscopic method for determining lead levels in water requires a significant capital investment in the instrument and an experienced operator to obtain reliable results. Other methods, such as titrimetry, require only simple equipment and reagents and can be learned quickly. [Pg.44]

Electrothermal Atomizers A significant improvement in sensitivity is achieved by using resistive heating in place of a flame. A typical electrothermal atomizer, also known as a graphite furnace, consists of a cylindrical graphite tube approximately... [Pg.414]

Trace metals in sea water are preconcentrated either by coprecipitating with Ee(OH)3 and recovering by dissolving the precipitate or by ion exchange. The concentrations of several trace metals are determined by standard additions using graphite furnace atomic absorption spectrometry. [Pg.449]

L Vov, B. V. Graphite Furnace Atomic Absorption Spectrometry, AuflZ. Chem. 1991, 63, 924A-931A. [Pg.459]

Gran plot a linearized form of a titration curve, (p. 293) graphite furnace an electrothermal atomizer that relies on resistive heating to atomize samples, (p. 414) gravimetry any method in which the signal is a mass or change in mass. (p. 233)... [Pg.773]

Numerous methods have been pubUshed for the determination of trace amounts of tellurium (33—42). Instmmental analytical methods (qv) used to determine trace amounts of tellurium include atomic absorption spectrometry, flame, graphite furnace, and hydride generation inductively coupled argon plasma optical emission spectrometry inductively coupled plasma mass spectrometry neutron activation analysis and spectrophotometry (see Mass spectrometry Spectroscopy, optical). Other instmmental methods include polarography, potentiometry, emission spectroscopy, x-ray diffraction, and x-ray fluorescence. [Pg.388]

Two colorimetric methods are recommended for boron analysis. One is the curcumin method, where the sample is acidified and evaporated after addition of curcumin reagent. A red product called rosocyanine remains it is dissolved in 95 wt % ethanol and measured photometrically. Nitrate concentrations >20 mg/L interfere with this method. Another colorimetric method is based upon the reaction between boron and carminic acid in concentrated sulfuric acid to form a bluish-red or blue product. Boron concentrations can also be deterrnined by atomic absorption spectroscopy with a nitrous oxide—acetjiene flame or graphite furnace. Atomic emission with an argon plasma source can also be used for boron measurement. [Pg.231]

Atomic absorption spectroscopy is more suited to samples where the number of metals is small, because it is essentially a single-element technique. The conventional air—acetylene flame is used for most metals however, elements that form refractory compounds, eg, Al, Si, V, etc, require the hotter nitrous oxide—acetylene flame. The use of a graphite furnace provides detection limits much lower than either of the flames. A cold-vapor-generation technique combined with atomic absorption is considered the most suitable method for mercury analysis (34). [Pg.232]

Atomic absorption spectroscopy is an alternative to the colorimetric method. Arsine is stiU generated but is purged into a heated open-end tube furnace or an argon—hydrogen flame for atomi2ation of the arsenic and measurement. Arsenic can also be measured by direct sample injection into the graphite furnace. The detection limit with the air—acetylene flame is too high to be useful for most water analysis. [Pg.232]

ELECTROTHERMAL ATOMIZATION IN GRAPHITE FURNACE A KINETIC MODEL WITH TWO INDEPENDENT SOURCES... [Pg.105]

In this work, atmospheric particles (PM 10 and PM 2.5) were collected by a dichotomos air sampler. Several leaching procedures were investigated for decomposition of heavy metals. The digests were pre-concentrated with sodium diethyldithiocarbamate. The determinations were canted out on a Vartan Model AA-220 atomic absorption spectrometer. The instrarment was equipped with a GTA-110 graphite furnace system. Table 1 shows the concentrations of heavy metals associated with PM 10 and PM 2.5 particles. Table 1. Concentrations of heavy metals in PM 10 and PM 2.5 atmospheric particles (ng/m )... [Pg.237]

In the plasma, the sample is vaporized and chemical bonds are effectively broken resulting in free atoms and ions. Temperatures of 5000-9000 K have been measured in the plasma compared to typical temperatures of 2000-3000 K in flames and graphite furnaces. [Pg.635]

Electrothermal vaporization can be used for 5-100 )iL sample solution volumes or for small amounts of some solids. A graphite furnace similar to those used for graphite-furnace atomic absorption spectrometry can be used to vaporize the sample. Other devices including boats, ribbons, rods, and filaments, also can be used. The chosen device is heated in a series of steps to temperatures as high as 3000 K to produce a dry vapor and an aerosol, which are transported into the center of the plasma. A transient signal is produced due to matrix and element-dependent volatilization, so the detection system must be capable of time resolution better than 0.25 s. Concentration detection limits are typically 1-2 orders of magnitude better than those obtained via nebulization. Mass detection limits are typically in the range of tens of pg to ng, with a precision of 10% to 15%. [Pg.638]

In some applications the baked artiele would be further heat treated (graphitizing). Durmg graphitization, the stock is positioned in the graphitization furnace and covered with packmg material. Two stackmg... [Pg.210]

Amongst other devices used to produce the required atoms in the vapour state are the Delves cup which enables the determination of lead in blood samples the sample is placed in a small nickel cup which is inserted directly into an acetylene-air flame. The tantalum boat is a similar device to the Delves cup in this case the sample is placed into a small tantalum dish which is then inserted into an acetylene-air flame. The use of these devices, especially for small sample volumes, has now been largely superseded by the graphite furnace. [Pg.788]

Figure 15-12 is a schematic illustration of a technique known as acid volatile sulfides/ simultaneously extracted metals analysis (AVS/SEM). Briefly, a strong acid is added to a sediment sample to release the sediment-associated sulfides, acid volatile sulfides, which are analyzed by a cold-acid purge-and-trap technique (e.g., Allen et ai, 1993). The assumption shown in Fig. 15-12 is that the sulfides are present in the sediments in the form of either FeS or MeS (a metal sulfide). In a parallel analysis, metals simultaneously released with the sulfides (the simultaneously extracted metals) are also quantified, for example, by graphite furnace atomic absorption spectrometry. Metals released during the acid attack are considered to be associated with the phases operationally defined as "exchangeable," "carbonate," "Fe and Mn oxides," "FeS," and "MeS."... [Pg.400]

In order to derive a quantitative relation between emission Intensity as measured by EMI and actual metal content, cell samples were subjected to graphite furnace atomic absorption (GFAA) analysis (14). Atomic absorption experiments were performed both on cells which had been stained with a fluorescent reagent and on cells not exposed to a lumlnophore. After EMI analysis, 50 fiL of cell suspension were withdrawn from the 0.30 mL of sample used for EMI and were digested In 150 iiL of concentrated HNO3 for 90 minutes at 85° . These solutions were then diluted to 1/10 of their concentration with deionized water, and the 150 liL of these diluted... [Pg.87]

Vol. 149. A Practical Guide to Graphite Furnace Atomic Absorption Spectrometry. By David J. Butcher and Joseph Sneddon... [Pg.450]


See other pages where Graphite furnaces is mentioned: [Pg.35]    [Pg.36]    [Pg.45]    [Pg.48]    [Pg.49]    [Pg.414]    [Pg.446]    [Pg.446]    [Pg.456]    [Pg.714]    [Pg.257]    [Pg.177]    [Pg.335]    [Pg.232]    [Pg.232]    [Pg.410]    [Pg.332]    [Pg.69]    [Pg.393]    [Pg.2206]    [Pg.78]    [Pg.105]    [Pg.625]    [Pg.634]    [Pg.765]    [Pg.354]    [Pg.788]    [Pg.934]    [Pg.88]    [Pg.94]   
See also in sourсe #XX -- [ Pg.122 ]

See also in sourсe #XX -- [ Pg.234 ]

See also in sourсe #XX -- [ Pg.53 , Pg.56 , Pg.60 ]

See also in sourсe #XX -- [ Pg.28 , Pg.33 ]

See also in sourсe #XX -- [ Pg.233 ]

See also in sourсe #XX -- [ Pg.853 ]

See also in sourсe #XX -- [ Pg.118 , Pg.228 , Pg.295 ]

See also in sourсe #XX -- [ Pg.457 ]

See also in sourсe #XX -- [ Pg.443 ]

See also in sourсe #XX -- [ Pg.437 , Pg.438 , Pg.445 ]

See also in sourсe #XX -- [ Pg.118 , Pg.228 , Pg.295 ]

See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.219 ]

See also in sourсe #XX -- [ Pg.215 ]

See also in sourсe #XX -- [ Pg.123 ]

See also in sourсe #XX -- [ Pg.43 ]




SEARCH



© 2024 chempedia.info