Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic absorption spectrometry instrumentation

Since the introduction of commercial atomic absorption spectrometry instruments in the early 1960s, this technique has rapidly gained wide... [Pg.142]

Butcher, D.J. (2006) Advances in electrothermal atomisation atomic absorption spectrometry instrumentation, methods, and applications. Appl Spect Rev, 41 (1), 15-34. [Pg.63]

Cobalt-EDTA (Co-EDTA) Atomic absorption spectrometry Instrumental neutron activation analysis... [Pg.1972]

Micro-pipetting instruments such as the "Eppendorf or "Oxford pipettors with disposable plastic cone tips are customarily employed to dispense the liquid samples into electrothermal atomizers. Sampling problems which are associated with the use of these pipettors are among the troublesome aspects of electrothermal atomic absorption spectrometry (67,75). The plastic cone-tips are frequently contaminated with metals, and they should invariably be cleaned before use by soaking in dilute "ultra pure nitric acid, followed by multiple rinses with demineralized water which has been distilled in a quartz still. [Pg.254]

In Table I are listed comprehensive citations of published methods for analyses of trace metals In body fluids and other clinical specimens by means of electrothermal atomic absorption spectrometry. Readers are cautioned that many of the early methods that are cited In Table I have become outmoded, owing to Improvements In Instrumentation for electrothermal atomic absorption spectrometry. All of the published methods need to be critically evaluated In the prospective analyst s laboratory before they can be confidently employed for diagnostic measurements of trace metals In body fluids. Despite these caveats, the author believes that Table I should be helpful as a guide to the growing literature on clinical and biological applications of electrothermal atomic absorption spectrometry. [Pg.263]

In modern times, most analyses are performed on an analytical instrument for, e.g., gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-violet/visible (UV) or infrared (IR) spectrophotometry, atomic absorption spectrometry, inductively coupled plasma mass spectrometry (ICP-MS), mass spectrometry. Each of these instruments has a limitation on the amount of an analyte that they can detect. This limitation can be expressed as the IDL, which may be defined as the smallest amount of an analyte that can be reliably detected or differentiated from the background on an instrument. [Pg.63]

Multi-element AAS has been reviewed [112], as well as ETAAS [104] and instrumental aspects of GFAAS [113]. Various monographs on analytical atomic absorption spectrometry are available [52,96,114,115], and on GFAAS [116] and ETAAS [117] more in particular. [Pg.611]

J.E. Cantle (ed.), Techniques and Instrumentation in Analytical Chemistry. Vol. 5. Atomic Absorption Spectrometry, Elsevier, Amsterdam (1982). [Pg.682]

It is an advantage of electroanalysis and its apparatus that the financial investment is low in comparison, for instance, with the more instrumental spectrometric methods real disadvantages are the need to have the analyte in solution and to be familiar with the various techniques and their electrochemistry it is to be regretted that the knowledge of chemistry and the skill needed often deter workers from applying electroanalysis when this offers possibilies competitive with more instrumental methods (cf., stripping voltammetry versus atomic absorption spectrometry). [Pg.226]

Adsorptive cathodic stripping voltammetry has an advantage over graphite furnace atomic absorption spectrometry in that the metal preconcentration is performed in situ, hence reducing analysis time and risk of contamination. Additional advantages are low cost of instrumentation and maintenance, and the possibility to use adapted instrumentation for online and shipboard monitoring. [Pg.168]

Flame emission spectrometry is used extensively for the determination of trace metals in solution and in particular the alkali and alkaline earth metals. The most notable applications are the determinations of Na, K, Ca and Mg in body fluids and other biological samples for clinical diagnosis. Simple filter instruments generally provide adequate resolution for this type of analysis. The same elements, together with B, Fe, Cu and Mn, are important constituents of soils and fertilizers and the technique is therefore also useful for the analysis of agricultural materials. Although many other trace metals can be determined in a variety of matrices, there has been a preference for the use of atomic absorption spectrometry because variations in flame temperature are much less critical and spectral interference is negligible. Detection limits for flame emission techniques are comparable to those for atomic absorption, i.e. from < 0.01 to 10 ppm (Table 8.6). Flame emission spectrometry complements atomic absorption spectrometry because it operates most effectively for elements which are easily ionized, whilst atomic absorption methods demand a minimum of ionization (Table 8.7). [Pg.319]

The most important features of liquid membranes are that they olfer highly selective extraction, efficient enrichment of analytes from the matrix in only one step, and the possibility of automated interfacing to different analytical instruments such as liquid chromatography, gas chromatography, capillary zone electrophoresis, UV spectrophotometry, atomic absorption spectrometry, and mass spectrometry [82]. [Pg.578]

Five liquid membrane electrodes (Table 13.3) are now commercially available and have found wide application in the testing of electrolytes in biological and technological systems. All five electrodes perform well in the concentration range over which the Nernstian slope is maintained, i.e., from 10 -10 moldm . These electrodes to a certain extent have replaced in both chemical and clinical laboratories the more traditional instrumental methods of analysis, such as flame photometry and atomic absorption spectrometry. There are, of course, many more liquid membrane electrodes, but the availability of satisfactory solid electrodes has greatly restricted their development and practical application. [Pg.590]

A convenient method is the spectrometric determination of Li in aqueous solution by atomic absorption spectrometry (AAS), using an acetylene flame—the most common technique for this analyte. The instrument has an emission lamp containing Li, and one of the spectral lines of the emission spectrum is chosen, according to the concentration of the sample, as shown in Table 2. The solution is fed by a nebuhzer into the flame and the absorption caused by the Li atoms in the sample is recorded and converted to a concentration aided by a calibration standard. Possible interference can be expected from alkali metal atoms, for example, airborne trace impurities, that ionize in the flame. These effects are canceled by adding 2000 mg of K per hter of sample matrix. The method covers a wide range of concentrations, from trace analysis at about 20 xg L to brines at about 32 g L as summarized in Table 2. Organic samples have to be mineralized and the inorganic residue dissolved in water. The AAS method for determination of Li in biomedical applications has been reviewed . [Pg.324]

Molybdenum may be identified at trace concentrations by flame atomic absorption spectrometry using nitrous oxide-acetylene flame. The metal is digested with nitric acid, diluted and analyzed. Aqueous solution of its compounds alternatively may be chelated with 8—hydroxyquinobne, extracted with methyl isobutyl ketone, and analyzed as above. The metal in solution may also be analyzed by ICP/AES at wavelengths 202.03 or 203.84 nm. Other instrumental techniques to measure molybdenum at trace concentrations include x-ray fluorescence, x-ray diffraction, neutron activation, and ICP-mass spectrometry, this last being most sensitive. [Pg.584]

Describe suitable instrumentation for sensitive analytical measurements in atomic absorption spectrometry. Include a discussion of the ways in which the atomic population in the atom cell may be maximized and why the light source is always a line source. [Pg.158]

To optimize the instrumental conditions for the analysis of magnesium by atomic absorption spectrometry. [Pg.163]

The concentration levels of most trace metals and metalloids lie below 1000 pg P . Therefore, the classical methods of analysis do not have the required sensitivity. Among the instrumental techniques that have been extensively used for the analysis of biological materials include, atomic absorption spectrometry, plasma emission spectrometry, anodic stripping voltammetry and neutron activation analysis. [Pg.163]

Determination of the instrumental detection limit of atomic absorption spectrometry and also precision as a function of concentration for the four elements listed. [Pg.96]

Numerous methods have been published for the determination of trace amounts of tellurium (33—42). Instrumental analytical methods (qv) used to determine trace amounts of tellurium include atomic absorption spectrometry, flame, graphite furnace, and hydride generation inductively coupled argon plasma optical emission spectrometry inductively coupled plasma mass spectrometry neutron activation analysis and spectrophotometry (see Mass SPECTROMETRY Spectroscopy, OPTICAL). Other instrumental methods include polarography, potentiometry, emission spectroscopy, x-ray diffraction, and x-ray fluorescence. [Pg.388]

Figure 1.6 Configurations of instruments for atomic absorption spectrometry, (a) Single-beam spectrometer (b) double-beam spectrometer. Figure 1.6 Configurations of instruments for atomic absorption spectrometry, (a) Single-beam spectrometer (b) double-beam spectrometer.
A number of instrumental analytical techniques can be used to measure the total phosphorus content of organophosphorus compounds, regardless of the chemical bonding of phosphorus within the molecules, as opposed to the determination of phosphate in mineralized samples. If the substances are soluble, there is no need for their destruction and for the conversion of phosphorus into phosphate, a considerable advantage over chemical procedures. The most important methods are flame photometry and inductively coupled plasma atomic emission spectrometry the previously described atomic absorption spectrometry is sometimes useful. [Pg.357]

Carbon Monoxide. Methods for determining carbon monoxide include detection by conversion to mercury vapor, gas filter correlation spectrometry, TDLAS, and grab sampling followed by gas chromatograph (GC) analysis. The quantitative liberation of mercury vapor from mercury oxide by CO has been used to measure CO (73). The mercury vapor concentration is then measured by flameless atomic absorption spectrometry. A detection limit of 0.1 ppbv was reported for a 30-s response time. Accuracy was reported to be 3% at tropospheric mixing ratios. A commercial instrument providing similar performance is available. [Pg.135]

Until now, little attention has been given to the analysis of ancient copper alloys with LA-ICP-MS. This type of material is usually analyzed with fast or instrumental neutron activation analysis (FNAA or INAA), particle induced X-ray emission (PIXE), X-ray fluorescence (XRF), inductively coupled plasma-atomic emission spectrometry or inductively coupled plasma-atomic absorption spectrometry (ICP-AES or ICP-AAS). Some of these techniques are destructive and involve extensive sample preparation, some measure only surface compositions, and some require access to a cyclotron or a reactor. LA-ICP-MS is riot affected by any of these inconveniences. We propose here an analytical protocol for copper alloys using LA-ICP-MS and present its application to the study of Matisse bronze sculptures. [Pg.337]


See other pages where Atomic absorption spectrometry instrumentation is mentioned: [Pg.10]    [Pg.28]    [Pg.55]    [Pg.10]    [Pg.28]    [Pg.55]    [Pg.252]    [Pg.218]    [Pg.610]    [Pg.194]    [Pg.245]    [Pg.125]    [Pg.524]    [Pg.101]    [Pg.140]    [Pg.210]    [Pg.61]    [Pg.356]    [Pg.95]    [Pg.335]    [Pg.268]    [Pg.347]    [Pg.356]    [Pg.125]   
See also in sourсe #XX -- [ Pg.325 ]

See also in sourсe #XX -- [ Pg.9 , Pg.10 , Pg.10 , Pg.11 , Pg.12 ]

See also in sourсe #XX -- [ Pg.325 ]

See also in sourсe #XX -- [ Pg.83 ]

See also in sourсe #XX -- [ Pg.389 , Pg.390 , Pg.391 , Pg.392 , Pg.393 , Pg.394 , Pg.395 , Pg.396 , Pg.397 , Pg.398 , Pg.399 , Pg.400 , Pg.401 ]

See also in sourсe #XX -- [ Pg.8 , Pg.8 ]

See also in sourсe #XX -- [ Pg.10 , Pg.11 , Pg.12 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Absorption instruments

Absorption spectrometry

Atomic absorption spectrometry

Atomic absorption spectrometry atomizers

Atomic absorption spectrometry instrument

Atomic absorption spectrometry instrument

Inductively coupled plasma atomic absorption spectrometry instrumentation

Spectrometry instrumentation

Zeeman atomic absorption spectrometry instrumentation

© 2024 chempedia.info