Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron activation-mass spectrometry

In 1956 Boyd and Larson thoroughly sought for technetium in various samples using analytical methods of high sensitivity such as neutron activation, mass spectrometry, emission spectroscopy, spectrophotometry, and polarography. Not one of their numerous concentrates revealed traces of natural technetium. It now seems clear that primordial technetium does not exist in nature. [Pg.112]

G. V. Iyengar, W. B. Clarke, R. G. Dawing, Determination of boron and lithium in diverse biological matrices using neutron activation - mass spectrometry (NA-MS), Fresenius J. Anal. Chem., 338 (1990), 562-566. [Pg.350]

Prompt gamma-activation analysis and neutron activation-mass spectrometry techniques have been developed that can accurately measure boron in biomaterials (Anderson et al. 1990, 1994). One major... [Pg.1253]

Na-DDC sodium diethyldithiocarbamate NAMS neutron activation mass spectrometry... [Pg.1689]

Shazali 1, Van t Dack L, Gijbels R (1987) Determination of precious metals in ores and rocks by thermal neutron activation/y-spectrometry after preconcentration by nickel sulfide fire assay and coprecipitation with tellurium. Anal Chim Acta 196 49-58 Stembeck J, Sjodin A, Andreasson K (2002) Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos Env 36 4735-4744 Sun Y, Guan X, Du A (1998) Determination of platinum group elements by inductively coupled plasma-mass spectrometry combined with nickel sulfide fire assay and tellurium coprecipitation. Spectrochim Acta B 53 1463-1467... [Pg.233]

Analyses of alloys or ores for hafnium by plasma emission atomic absorption spectroscopy, optical emission spectroscopy (qv), mass spectrometry (qv), x-ray spectroscopy (see X-ray technology), and neutron activation are possible without prior separation of hafnium (19). Alternatively, the combined hafnium and zirconium content can be separated from the sample by fusing the sample with sodium hydroxide, separating silica if present, and precipitating with mandelic acid from a dilute hydrochloric acid solution (20). The precipitate is ignited to oxide which is analy2ed by x-ray or emission spectroscopy to determine the relative proportion of each oxide. [Pg.443]

Numerous methods have been pubUshed for the determination of trace amounts of tellurium (33—42). Instmmental analytical methods (qv) used to determine trace amounts of tellurium include atomic absorption spectrometry, flame, graphite furnace, and hydride generation inductively coupled argon plasma optical emission spectrometry inductively coupled plasma mass spectrometry neutron activation analysis and spectrophotometry (see Mass spectrometry Spectroscopy, optical). Other instmmental methods include polarography, potentiometry, emission spectroscopy, x-ray diffraction, and x-ray fluorescence. [Pg.388]

Thorinm-232 is the only non-radiogenic thorium isotope of the U/Th decay series. Thorinm-232 enters the ocean by continental weathering and is mostly in the particulate form. Early measurements of Th were by alpha-spectrometry and required large volume samples ca. 1000 T). Not only did this make sample collection difficult, but the signal-to-noise ratio was often low and uncertain. With the development of a neutron activation analysis " and amass spectrometry method " the quality of the data greatly improved, and the required volume for mass spectrometry was reduced to less than a liter. Surface ocean waters typically have elevated concentrations of dissolved and particulate 17,3 7,62... [Pg.46]

Neutron activation also has been combined with accelerator mass spectrometry and has been demonstrated to have part-per-billion sensitivities fer bulk nitrogen analysis in silicon. This combination was also used to obtain depth profile of Cl in silicon semiconductors. ... [Pg.678]

H. Kramer, S. Semel J.E. Abel, Trace Elemental Survey Analysis of Trinitrotoluene , PATR 4767 (1975) (An evaluation of the applicability of spark source mass spectrometry and thermal neutron activation for the detn of origin-related trace elemental impurities in TNT) 10) C. Ribando J. Haber-man, Origin-Identification of Explosives Via Their Composite Impurity Profiles I. The... [Pg.141]

Neutron Activation Analysis X-Ray Fluorescence Particle-Induced X-Ray Emission Particle-Induced Nuclear Reaction Analysis Rutherford Backscattering Spectrometry Spark Source Mass Spectrometry Glow Discharge Mass Spectrometry Electron Microprobe Analysis Laser Microprobe Analysis Secondary Ion Mass Analysis Micro-PIXE... [Pg.128]

Chemical Analysis. The chemical composition of ancient objects is important for their authentication. The nature as well as the relative amounts of major, minor, and trace elements in any object are of use for determining the authenticity or otherwise of ceramics, glass, or alloys. A wide range of analytical techniques, depending on the nature of the material studied, have been used for this purpose, including X-rays fluorescence analysis, mass spectrometry, atomic absorption spectroscopy, and neutron activation analy-... [Pg.463]

The chemistry of rare earth elements makes them particularly useful in studies of marine geochemistry [637]. But the determination of rare earths in seawater at ultratrace levels has always been a difficult task. Of the various methods applied, instrumental neutron activation analysis and isotope dilution mass spectrometry were the main techniques used for the determination of rare earths in seawater. However, sample preparation is tedious and large amounts of water are required in neutron activation analysis. In addition, the method can only offer relatively low sample throughputs and some rare earths cannot be determined. The main drawbacks of isotopic dilution mass spectrometry are that it is time-consuming and expensive, and monoisotopic elements cannot be determined as well. [Pg.214]

Differentiation of inorganic and organic mercury can be achieved in a number of different ways, many of which depend upon the reduction and vapourisation of the inorganic mercury, followed by reduction [84] or oxidation [85,86] of the organic mercury compounds, and a final measurement by atomic absorption or mass spectrometry. Similar methods of separation of the inorganic and organic components are used in the pretreatment of samples where the final analysis for mercury is to be made by neutron activation analysis [87,88]. [Pg.467]

Tsolakidou, A. and Kilikoglou, V. (2002). Comparative analysis of ancient ceramics by neutron activation analysis, inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, and X-ray fluorescence. Analytical and... [Pg.386]

Zheng, J., Goessler, W., Geiszinger, A., et al. (1997). Multi-element determination in earthworms with instrumental neutron activation analysis and inductively coupled plasma mass spectrometry a comparison. Journal of Radioanalytical and Nuclear Chemistry 223 149-155. [Pg.390]

An introductory manual that explains the basic concepts of chemistry behind scientific analytical techniques and that reviews their application to archaeology. It explains key terminology, outlines the procedures to be followed in order to produce good data, and describes the function of the basic instrumentation required to carry out those procedures. The manual contains chapters on the basic chemistry and physics necessary to understand the techniques used in analytical chemistry, with more detailed chapters on atomic absorption, inductively coupled plasma emission spectroscopy, neutron activation analysis, X-ray fluorescence, electron microscopy, infrared and Raman spectroscopy, and mass spectrometry. Each chapter describes the operation of the instruments, some hints on the practicalities, and a review of the application of the technique to archaeology, including some case studies. With guides to further reading on the topic, it is an essential tool for practitioners, researchers, and advanced students alike. [Pg.407]

Analytical Techniques Atomic absorption spectrometry, 158, 117 multielement atomic absorption methods of analysis, 158, 145 ion microscopy in biology and medicine, 158, 157 flame atomic emission spectrometry, 158, 180 inductively coupled plasma-emission spectrometry, 158, 190 inductively coupled plasma-mass spectrometry, 158, 205 atomic fluorescence spectrometry, 158, 222 electrochemical methods of analysis, 158, 243 neutron activation analysis, 158, 267. [Pg.457]

Mass Spectrometry and Neutron Activation Two Techniques for Testing the Purity of MYKO 63 and Relatives... [Pg.14]

In the first step, we were able to separate this penta derivative by preparative H.P.L.C. and we subsequently treated it with an excess of propyleneimine in order to reach the required hexasubstituted compound. Under such conditions, we succeeded in preparing a N3P3(MeAz)g real sample (free of chlorine, as demonstrated by neutron activation analysis) identified by mass spectrometry (Fig. 32) and by P nmr (Fig. 33) (6 = — 36 ppm with 85 % HjPO as standard, to be compared with 8(N3P3Azg) = --37 ppm). The refractive index of this sample, n = 1.4825, appeared to be significantly far from Ratz s value. [Pg.44]

The mass spectrum of SOAz is shown Fig. 38 and its pattern is quite different from that of MYKO 63 in fact we no longer observe the fall of the Az leaves which characterizes any mass spectrum within the MYKO 63 series. The base peak is at m/z 320 and there are very few other secondary peaks till m/z 50. No chlorinated impurity could be detected either by mass spectrometry or by neutron activation. [Pg.56]


See other pages where Neutron activation-mass spectrometry is mentioned: [Pg.757]    [Pg.187]    [Pg.1545]    [Pg.1546]    [Pg.1594]    [Pg.1597]    [Pg.757]    [Pg.187]    [Pg.1545]    [Pg.1546]    [Pg.1594]    [Pg.1597]    [Pg.335]    [Pg.323]    [Pg.366]    [Pg.205]    [Pg.138]    [Pg.55]    [Pg.443]    [Pg.448]    [Pg.26]    [Pg.107]    [Pg.340]    [Pg.22]    [Pg.20]    [Pg.8]    [Pg.12]    [Pg.61]    [Pg.289]    [Pg.747]    [Pg.170]    [Pg.124]    [Pg.41]   
See also in sourсe #XX -- [ Pg.1253 ]




SEARCH



Activation spectrometry

Active mass

Mass activity

Neutron activation

Neutron activation spectrometry

Neutron mass

© 2024 chempedia.info