Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trace impurity

Residual Current Even in the absence of analyte, a small current inevitably flows through an electrochemical cell. This current, which is called the residual current, consists of two components a faradaic current due to the oxidation or reduction of trace impurities, and the charging current. Methods for discriminating between the faradaic current due to the analyte and the residual current are discussed later in this chapter. [Pg.513]

The residual current, in turn, has two sources. One source is a faradaic current due to the oxidation or reduction of trace impurities in the sample, i . The other source is the charging current, ich> that is present whenever the working electrode s potential changes. [Pg.521]

The steps (reactions) by which normal ions fragment are important pieces of information that are lacking in a normal mass spectrum. These fragmentation reactions can be deduced by observations on metastable ions to obtain important data on molecular structure, the complexities of mixtures, and the presence of trace impurities. [Pg.231]

Although many variations of the cyclohexane oxidation step have been developed or evaluated, technology for conversion of the intermediate ketone—alcohol mixture to adipic acid is fundamentally the same as originally developed by Du Pont in the early 1940s (98,99). This step is accomplished by oxidation with 40—60% nitric acid in the presence of copper and vanadium catalysts. The reaction proceeds at high rate, and is quite exothermic. Yield of adipic acid is 92—96%, the major by-products being the shorter chain dicarboxytic acids, glutaric and succinic acids,and CO2. Nitric acid is reduced to a combination of NO2, NO, N2O, and N2. Since essentially all commercial adipic acid production arises from nitric acid oxidation, the trace impurities patterns ate similar in the products of most manufacturers. [Pg.242]

Loaded Adsorbents. Where highly efficient removal of a trace impurity is required it is sometimes effective to use an adsorbent preloaded with a reactant rather than rely on the forces of adsorption. Examples include the use of 2eohtes preloaded with bromine to trap traces of olefins as their more easily condensible bromides 2eohtes preloaded with iodine to trap mercury vapor, and activated carbon loaded with cupric chloride for removal of mercaptans. [Pg.255]

Removal of trace impurities from gases or liquid streams Bulk separations (gas or liquid)... [Pg.266]

In contrast to trace impurity removal, the use of adsorption for bulk separation in the liquid phase on a commercial scale is a relatively recent development. The first commercial operation occurred in 1964 with the advent of the UOP Molex process for recovery of high purity / -paraffins (6—8). Since that time, bulk adsorptive separation of liquids has been used to solve a broad range of problems, including individual isomer separations and class separations. The commercial availability of synthetic molecular sieves and ion-exchange resins and the development of novel process concepts have been the two significant factors in the success of these processes. This article is devoted mainly to the theory and operation of these Hquid-phase bulk adsorptive separation processes. [Pg.291]

Catalytic cathodes in membrane cell operations exhibit a voltage savings of 100—200 mV and a life of about 2 + yr using ultrapure brine. However, trace impurities such as iron from the caustic recirculation loop can deposit on the cathode and poison the coating, thereby reducing its economic life. [Pg.500]

Although the book on reagent chemicals contains many tests for the determination of trace impurities in reagents, it is not intended to be a text on the techniques of trace analysis but rather to provide tests that are reproducible in various laboratories, and which are accurate, economic, and feasible (see... [Pg.446]

The conventional method for quantitative analysis of galHum in aqueous media is atomic absorption spectroscopy (qv). High purity metallic galHum is characteri2ed by trace impurity analysis using spark source (15) or glow discharge mass spectrometry (qv) (16). [Pg.160]

Uses. The principal uses of NaBH are ia synthesis of pharmaceuticals (qv) and fine organic chemicals removal of trace impurities from bulk organic chemicals wood-pulp bleaching, clay leaching, and vat-dye reductions and removal and recovery of trace metals from plant effluents. [Pg.304]

To prepare a USP-grade Epsom salt, higher purity MgO or Mg(OH)2 is used. USP and food grades require low chloride levels, limiting allowable chloride content of the MgO to 0.08 wt %. Trace impurities including iron and aluminum are precipitated using excess MgO. EoUowing crystallization, the Epsom salt is washed free of mother Hquor. [Pg.357]

Water in the candles influences the evolution of chlorine and chlorine dioxide (9,10). Hydrogen chloride generated from trace impurities in the chlorate can react to produce the same compounds. [Pg.485]

Naturally Derived Materials. The following are descriptions of some of the most important naturally derived materials in use. Importance in this context is defined in terms of the total value of the materials, which range from expensive, low volume materials that have great aesthetic value to relatively inexpensive and widely used products. Eor some of the naturals, it is indicated whether they can be distilled to provide individual chemicals for use as such or as intermediates. Materials produced in this way from a given natural source are usually not interchangeable with those from other naturals or synthetics. In some cases this may be due to optical isomerism, which can have a significant effect on odor, but usually it is due to trace impurities. [Pg.76]

Aluminum obtained by electrolysis of cryoHte baths contains iron [7439-89-6] and siUcon [7440-21-3] as impurities. Iron content may vary from 0.05 to 0.4% and siUcon from 0.05 to 0.15% depending on the raw materials and the age and condition of the reduction cell. Primary aluminum metal also contains small, usually not to exceed 0.05% in total, amounts of many other elements. Some of these trace impurities are Cu, Mn, Ni, Zn, V, Na, Ti, Mg, and Ga, most of which are present in quantities substantially below 100 ppm. [Pg.105]

Figure 1 shows the decomposition sequence for several hydrous precursors and indicates approximate temperatures at which the activated forms occur (1). As activation temperature is increased, the crystal stmctures become more ordered as can be seen by the x-ray diffraction patterns of Figure 2 (2). The similarity of these patterns combined with subtie effects of precursor crystal size, trace impurities, and details of sample preparation have led to some confusion in the Hterature (3). The crystal stmctures of the activated aluminas have, however, been well-documented by x-ray diffraction (4) and by nmr techniques (5). Figure 1 shows the decomposition sequence for several hydrous precursors and indicates approximate temperatures at which the activated forms occur (1). As activation temperature is increased, the crystal stmctures become more ordered as can be seen by the x-ray diffraction patterns of Figure 2 (2). The similarity of these patterns combined with subtie effects of precursor crystal size, trace impurities, and details of sample preparation have led to some confusion in the Hterature (3). The crystal stmctures of the activated aluminas have, however, been well-documented by x-ray diffraction (4) and by nmr techniques (5).
The distribution of impurities over a flat sihcon surface can be measured by autoradiography or by scanning the surface using any of the methods appropriate for trace impurity detection (see Trace and residue analysis). Depth measurements can be made by combining any of the above measurements with the repeated removal of thin layers of sihcon, either by wet etching, plasma etching, or sputtering. Care must be taken, however, to ensure that the material removal method does not contaminate the sihcon surface. [Pg.526]

Two different mixtures of peptides and alkaloids (qv) have been analy2ed by ce/uv/ms using sims to determine whether this technique can detect trace impurities in mixtures (85). The first mixture consisted of two bioactive peptide analogues, which included Lys-bradykinin (kahidin) and Met-Lys-bradykinin. The presence of 0.1% Lys-bradykinin was detected by sim ce/ms but not by ce/uv at 0.1% level as it migrated from the capillary column prior to the main component, Met-Lys-bradykinin. The second mixture consisted of two antibacterial alkaloids, berberine and palmitine. The presence of 0.15% palmitine was detected by ce/uv and sim ce/ms at 0.15% level as it migrated from the capillary column, following the main component berberine. This technique can provide a complementary technique for trace components in such sample mixtures. [Pg.246]


See other pages where Trace impurity is mentioned: [Pg.88]    [Pg.251]    [Pg.266]    [Pg.267]    [Pg.274]    [Pg.527]    [Pg.175]    [Pg.394]    [Pg.313]    [Pg.345]    [Pg.381]    [Pg.4]    [Pg.300]    [Pg.304]    [Pg.417]    [Pg.430]    [Pg.431]    [Pg.347]    [Pg.350]    [Pg.477]    [Pg.477]    [Pg.166]    [Pg.459]    [Pg.154]    [Pg.457]    [Pg.488]    [Pg.526]    [Pg.537]    [Pg.6]    [Pg.478]    [Pg.291]    [Pg.528]    [Pg.401]   
See also in sourсe #XX -- [ Pg.675 ]

See also in sourсe #XX -- [ Pg.250 ]

See also in sourсe #XX -- [ Pg.2 , Pg.6 ]

See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.129 , Pg.131 ]




SEARCH



Artificial traces impurities

Drugs trace impurities

Embrittlement of Metals by Trace Impurities

Impurities, trace level

Impurities, trace level structural identification

Inadvertent trace impurities

Other Trace Impurities

Removal trace components/impurities

Trace Impurities in Solvents

Trace background impurities

Trace impurities detection

Trace impurity analysis

Trace impurity content

Trace metal impurities

© 2024 chempedia.info