Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt EDTA

Gorby YA, Caccovo F Jr, Bolton H. 1998. Microbial reduction of cobalt EDTA in the presence and absence of manganese(IV) oxide. Environ Sci Technol 32 244-50. [Pg.232]

Arthur Adamson If I may, I would like to mention a reaction that I think is an example of substitution which paves the way for a redox reaction, and yet is not a case of the charge following the oxidant into the coordination sphere. This is the reaction of ferrocyanide with cobaltous EDTA. [Pg.71]

The final product is ferrocyanide and cobaltic EDTA, but this goes through an intermediate which can be isolated, and which is an adduct of these twro. Dr. Wilkins tried this system out in his rapid flow rate system and found a rate of association which was about right for substitution rates on a cobaltous ion. So this seemed to be a case where perhaps the nitrogen end of a cyanide was able to coordinate into a cobaltous complex, with either concomitant cr subsequent charge transfer. Yet no transfer of ligand occurs in the overall reaction. [Pg.72]

Nagler, J., R.A.Provoost and G.Parizel. 1978. Hydrogen cyanide poisoning Treatment with cobalt EDTA. J. Occup. Med. 20(6) 414-416. [Pg.197]

EDTA (ethylenediaminetetraacetic acid) forms stable metal chelates with a number of metal ions. Using this reagent as a complexing- agent, arsenic, bismuth, and selenium can be determined without any interference in the presence of nickel and cobalt. The cobalt-EDTA chelate is stable in 5 M HCl solution, whereas the corresponding bismuth complex is not. The influence of copper on the determination of arsenic can also be eliminated with EDTA, but not in the determination of selenium. Thiourea has been used to eliminate the influence of copper in the determination of antimony and sodium oxalate to eliminate the influence of copper and nickel in the determination of tin. An addition of thiosemicarbazide and 1,10-phenanthro-line reduces the interference of copper, nickel, platinum, and palladium in the determination of arsenic. [Pg.124]

Cobalt-EDTA (Co-EDTA) Atomic absorption spectrometry Instrumental neutron activation analysis... [Pg.1972]

BackTitrations. In the performance of aback titration, a known, but excess quantity of EDTA or other chelon is added, the pH is now properly adjusted, and the excess of the chelon is titrated with a suitable standard metal salt solution. Back titration procedures are especially useful when the metal ion to be determined cannot be kept in solution under the titration conditions or where the reaction of the metal ion with the chelon occurs too slowly to permit a direct titration, as in the titration of chromium(III) with EDTA. Back titration procedures sometimes permit a metal ion to be determined by the use of a metal indicator that is blocked by that ion in a direct titration. Eor example, nickel, cobalt, or aluminum form such stable complexes with Eriochrome Black T that the direct titration would fail. However, if an excess of EDTA is added before the indicator, no blocking occurs in the back titration with a magnesium or zinc salt solution. These metal ion titrants are chosen because they form EDTA complexes of relatively low stability, thereby avoiding the possible titration of EDTA bound by the sample metal ion. [Pg.1167]

Chromium (ITT) can be analy2ed to a lower limit of 5 x 10 ° M by luminol—hydrogen peroxide without separating from other metals. Ethylenediaminetetraacetic acid (EDTA) is added to deactivate most interferences. Chromium (ITT) itself is deactivated slowly by complexation with EDTA measurement of the sample after Cr(III) deactivation is complete provides a blank which can be subtracted to eliminate interference from such ions as iron(II), inon(III), and cobalt(II), which are not sufficiently deactivated by EDTA (275). [Pg.274]

LCo(H20)6] ion, and bidentate /V-donor ligands such as cn, bipy and phen form octahedral cationic complexes [Co(L-L)3] , which are much more stable to oxidation than is the hexaammine [Co(NH3)6l . Acac yields the orange [Co(acac)2(H20)2] which has the tram octahedral structure and can be dehydrated to [Co(acac)2l which attains octahedral coordination by forming the tetrameric species shown in Fig. 26.3. This is comparable with the trimeric [Ni(acac>2]3 (p. 1157), like which it shows evidence of weak ferromagnetic interactions at very low temperatures. fCo(edta)(H20)] is ostensibly analogous to the 7-coordinate Mn and complexes with the same stoichiometry, but in fact the cobalt is only 6-coordinate, 1 of the oxygen atoms of the cdta being too far away from the cobalt (272 compared to 223 pm for the other edta donor atoms) to be considered as coordinated. [Pg.1131]

The method may also be applied to the analysis of silver halides by dissolution in excess of cyanide solution and back-titration with standard silver nitrate. It can also be utilised indirectly for the determination of several metals, notably nickel, cobalt, and zinc, which form stable stoichiometric complexes with cyanide ion. Thus if a Ni(II) salt in ammoniacal solution is heated with excess of cyanide ion, the [Ni(CN)4]2 ion is formed quantitatively since it is more stable than the [Ag(CN)2] ion, the excess of cyanide may be determined by the Liebig-Deniges method. The metal ion determinations are, however, more conveniently made by titration with EDTA see the following sections. [Pg.310]

In the back-titration small amounts of copper and zinc and trace amounts of manganese are quantitatively displaced from the EDTA and are complexed by the triethanolamine small quantities of cobalt are converted into a triethanolamine complex during the titration. Relatively high concentrations of copper can be masked in the alkaline medium by the addition of thioglycollic acid until colourless. Manganese, if present in quantities of more than 1 mg, may be oxidised by air and forms a manganese(III)-triethanolamine complex, which is intensely green in colour this does not occur if a little hydroxylammonium chloride solution is added. [Pg.336]

The cobalt content may be rapidly checked by titration with standard EDTA solution in the presence of xylenol orange as indicator (see Section 10.59). [Pg.455]

The rate of isotopic exchange in the solid state, between cobalt in the cation and in the anion of [60Co(H2O)6] [Co(edta)]2 4 H20, was increased [1144] by irradiation (100 Mrad) of the reactant. It was concluded that exchange occurred via vacancies, rather than through motion of a ring of cobalt atoms, one from a cationic site and the other from a neighbouring anionic site. [Pg.239]

Optical activity of cobalt(III), chromium(III) and rhodium III) complexes with aminopolycarboxy-late, edta-type and related ligands. D. J. Radanovic, Coord. Chem. Rev., 1984, 54, 159-261 (195). [Pg.52]

With a large excess of the cobalt reactant, the equilibration process followed first-order kinetics. Table 3-1 presents the data. The plot of kL, versus [Co(edta)2-] is linear, as displaced in Figure 3-2. The line gives k = (3.36 0.04)x 104 L mol ls"1 and k-1 =... [Pg.49]

The rate of peroxide decomposition and the resultant rate of oxidation are markedly increased by the presence of ions of metals such as iron, copper, manganese, and cobalt [13]. This catalytic decomposition is based on a redox mechanism, as in Figure 15.2. Consequently, it is important to control and limit the amounts of metal impurities in raw rubber. The influence of antioxidants against these rubber poisons depends at least partially on a complex formation (chelation) of the damaging ion. In favor of this theory is the fact that simple chelating agents that have no aging-protective activity, like ethylene diamine tetracetic acid (EDTA), act as copper protectors. [Pg.466]

The basis for the toxicological activity of this substance is the reaction of cobalt ion with cyanide ion to form a relatively nontoxic and stable ion complex. The hexacyanocobaltate ion contains a Co2+ central metal ion with six cyanide ions as ligands. This coordination complex involves six coordinate covalent bonds whereby each cyanide ion supplies a pair of electrons to form each covalent bond with the central cobalt ion. The formation constant for the hexacyanocobaltate ion is even larger than for dicobalt EDTA,3 and thus the cobalt ion preferentially exchanges an EDTA ligand for six cyano ligands ... [Pg.119]

The exchange of EDTA for the CN- ion reduces the concentration of cyanide ion in the body, making the cobalt ion an effective scavenger of toxic cyanide ions. [Pg.119]

Cai Z., Liu Z. Studies on oxidation states of cobalt extracted from soil with EDTA+HOAc+NTLtOAc. Pedosphere 1991 1 109. [Pg.333]

The heavy metals copper, manganese, cobalt and zinc were omitted individually and in combination from MS and B5 media to determine the effect on antibody stability in solution [63]. When IgG, antibody was added to these modified media in experiments similar to the one represented in Figure 2.2, only the B5 medium without Mn showed a significant improvement in antibody retention relative to normal culture media. Nevertheless, protein losses were considerable as only about 30% of the added antibody could be detected in the Mn-free medium after about 5 h. The beneficial effect of removing Mn was lost when all four heavy metals, Cu, Mn, Co and Zn, were omitted simultaneously. The reason for these results is unclear. Addition of the metal chelating agent ethylenediaminetetraacetate (EDTA) had a negligible effect on antibody retention in both MS and B5 media [63]. [Pg.34]

In another spectrophotometric procedure Motomizu [224] adds to the sample (2 litres) 40% (w/v) sodium citrate dihydrate solution (10 ml) and a 0.2% solution of 2-ethylamino-5-nitrosophenol in 0.01 M hydrochloric acid (20 ml). After 30 min, add 10% aqueous EDTA (10 ml) and 1,2-dichloroethane (20 ml), mechanically shake the mixture for 10 minutes, separate the organic phase and wash it successively with hydrochloric acid (1 2) (3 x 5 ml), potassium hydroxide (5 ml), and hydrochloric acid (1 2) (5 ml). Filter, and measure the extinction at 462 nm in a 50 mm cell. Determine the reagent blank by adding EDTA solution before the citrate solution. The sample is either set aside for about 1 day before analysis (the organic extract should then be centrifuged), or preferably it is passed through a 0.45 xm membrane-filter. The optimum pH range for samples is 5.5 - 7.5. From 0.07 to 0.12 p,g/l of cobalt was determined there is no interference from species commonly present in seawater. [Pg.166]

Chemical complexes of various transition metals have been shown to promote N-nitrosation (28). These metal complexes include ferrocyanide, ferricyanide, cupric ion, molybate ion, cobalt species, and mercuric acetate. All of the reactions are thought to proceed by oxidation-reduction mechanisms. However, such promotion may not be characteristic of transition metal complexes in general, since ferricyanide ion has been shown to promote nitrosation in metalworking fluids, whereas ferric EDTA does not (2 0). Since the metalworking operation generates metal chips and fines which build up in the fluids, this reaction could be of significance in the promotion of nitrosamine formation in water-based metalworking fluids. [Pg.162]

As we have seen earlier that the trivalent metal complexes are normally bound still more firmly due to the formation of four rings (unlike three rings with divalent metal complexes) and stable in strongly acidic solutions, for instance cobalt (Co2+) EDTA complex is fairly stable in concentrated hydrochloric acid ( 11.5 N). [Pg.163]


See other pages where Cobalt EDTA is mentioned: [Pg.432]    [Pg.298]    [Pg.432]    [Pg.305]    [Pg.56]    [Pg.129]    [Pg.298]    [Pg.279]    [Pg.1973]    [Pg.107]    [Pg.379]    [Pg.432]    [Pg.298]    [Pg.432]    [Pg.305]    [Pg.56]    [Pg.129]    [Pg.298]    [Pg.279]    [Pg.1973]    [Pg.107]    [Pg.379]    [Pg.68]    [Pg.378]    [Pg.859]    [Pg.794]    [Pg.178]    [Pg.178]    [Pg.182]    [Pg.14]    [Pg.116]    [Pg.121]    [Pg.119]    [Pg.575]    [Pg.192]    [Pg.3]   
See also in sourсe #XX -- [ Pg.269 ]




SEARCH



Cobalt EDTA complexes

Cobalt-EDTA chelate

EDTA

© 2024 chempedia.info