Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical techniques atomic absorption/emission spectrometry

Analytical Techniques Atomic absorption spectrometry, 158, 117 multielement atomic absorption methods of analysis, 158, 145 ion microscopy in biology and medicine, 158, 157 flame atomic emission spectrometry, 158, 180 inductively coupled plasma-emission spectrometry, 158, 190 inductively coupled plasma-mass spectrometry, 158, 205 atomic fluorescence spectrometry, 158, 222 electrochemical methods of analysis, 158, 243 neutron activation analysis, 158, 267. [Pg.457]

An important analysis regarding toxicological and legal requirements of flavourings is the control of heavy metal contaminations. Most of the heavy metals show toxic effects in humans, even in trace quantities. Their determination can only be accomplished using trace analysis techniques. In practice, the different analytical techniques Atomic Absorption Spectrometry (AAS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) have been employed successfully. Both methods require complete dissolution of the sample by decomposition. [Pg.587]

The detection limits of the old methods for the determination of arsenic (10) were too high to determine arsenic in uncontaminated biological samples. With the invention of instrumental techniques, such as flame atomic absorption (emission) spectrometry, graphite furnace atomic absorption spectrometry, neutron activation analysis, inductively coupled plasma atomic emission spectrometry, and inductively coupled plasma mass spectrometry, the ubiquity of arsenic in our environment was proven. The improvement of the analytical techniques has changed the reputation of arsenic from a poisonous substance to an essential trace element at least for warm-blooded animals (11). An arsenic requirement for humans cannot be deduced from these animal experiments. In recent literature, there are certainly more hints that arsenic might be an essential trace element for humans, but there is still a lot of future research work necessary to prove this. [Pg.28]

Only arc/spark, plasma emission, plasma mass spectrometry and X-ray emission spectrometry are suitable techniques for qualitative analysis as in each case the relevant spectral ranges can be scanned and studied simply and quickly. Quantitative methods based on the emission of electromagnetic radiation rely on the direct proportionality between emitted intensity and the concentration of the analyte. The exact nature of the relation is complex and varies with the technique it will be discussed more fully in the appropriate sections. Quantitative measurements by atomic absorption spectrometry depend upon a relation which closely resembles the Beer-Lambert law relating to molecular absorption in solution (p. 357 etal.). [Pg.289]

When primary X-rays are directed on to a secondary target, i.e. the sample, a proportion of the incident rays will be absorbed. The absorption process involves the ejection of inner (K or L) electrons from the atoms of the sample. Subsequently the excited atoms relax to the ground state, and in doing so many will lose their excess energy in the form of secondary X-ray photons as electrons from the higher orbitals drop into the hole in the K or L shell. Typical transitions are summarized in Figures 8.35 and 8.36. The reemission of X-rays in this way is known as X-ray fluorescence and the associated analytical method as X-ray fluorescence spectrometry. The relation between the two principal techniques of X-ray emission spectrometry is summarized in Figure 8.37. [Pg.339]

An introductory manual that explains the basic concepts of chemistry behind scientific analytical techniques and that reviews their application to archaeology. It explains key terminology, outlines the procedures to be followed in order to produce good data, and describes the function of the basic instrumentation required to carry out those procedures. The manual contains chapters on the basic chemistry and physics necessary to understand the techniques used in analytical chemistry, with more detailed chapters on atomic absorption, inductively coupled plasma emission spectroscopy, neutron activation analysis, X-ray fluorescence, electron microscopy, infrared and Raman spectroscopy, and mass spectrometry. Each chapter describes the operation of the instruments, some hints on the practicalities, and a review of the application of the technique to archaeology, including some case studies. With guides to further reading on the topic, it is an essential tool for practitioners, researchers, and advanced students alike. [Pg.407]

The analytical techniques used for additives analysis are reviewed below. They are mainly chromatographic but enzymatic, flow injection analysis, inductively coupled plasma-atomic emission spectrometry and atomic absorption methods are also used. [Pg.112]

A convenient method is the spectrometric determination of Li in aqueous solution by atomic absorption spectrometry (AAS), using an acetylene flame—the most common technique for this analyte. The instrument has an emission lamp containing Li, and one of the spectral lines of the emission spectrum is chosen, according to the concentration of the sample, as shown in Table 2. The solution is fed by a nebuhzer into the flame and the absorption caused by the Li atoms in the sample is recorded and converted to a concentration aided by a calibration standard. Possible interference can be expected from alkali metal atoms, for example, airborne trace impurities, that ionize in the flame. These effects are canceled by adding 2000 mg of K per hter of sample matrix. The method covers a wide range of concentrations, from trace analysis at about 20 xg L to brines at about 32 g L as summarized in Table 2. Organic samples have to be mineralized and the inorganic residue dissolved in water. The AAS method for determination of Li in biomedical applications has been reviewed . [Pg.324]

Ottaway, J. M. Heavy metals determinations by atomic absorption and emission spectrometry in Analytical Techniques for Heavy Metals in Biological Fluids, (ed.) Facchetti, S., Amsterdam—Oxford—New York Elsevier 1983... [Pg.172]

The most frequently applied analytical methods used for characterizing bulk and layered systems (wafers and layers for microelectronics see the example in the schematic on the right-hand side) are summarized in Figure 9.4. Besides mass spectrometric techniques there are a multitude of alternative powerful analytical techniques for characterizing such multi-layered systems. The analytical methods used for determining trace and ultratrace elements in, for example, high purity materials for microelectronic applications include AAS (atomic absorption spectrometry), XRF (X-ray fluorescence analysis), ICP-OES (optical emission spectroscopy with inductively coupled plasma), NAA (neutron activation analysis) and others. For the characterization of layered systems or for the determination of surface contamination, XPS (X-ray photon electron spectroscopy), SEM-EDX (secondary electron microscopy combined with energy disperse X-ray analysis) and... [Pg.259]

Figure 1.5 Schematics of basic components of analytical techniques based on atomic optical spectrometry, (a) Atomic absorption spectrometry (b) atomic fluorescence spectrometry (c) atomic emission spectrometry. Figure 1.5 Schematics of basic components of analytical techniques based on atomic optical spectrometry, (a) Atomic absorption spectrometry (b) atomic fluorescence spectrometry (c) atomic emission spectrometry.
A number of instrumental analytical techniques can be used to measure the total phosphorus content of organophosphorus compounds, regardless of the chemical bonding of phosphorus within the molecules, as opposed to the determination of phosphate in mineralized samples. If the substances are soluble, there is no need for their destruction and for the conversion of phosphorus into phosphate, a considerable advantage over chemical procedures. The most important methods are flame photometry and inductively coupled plasma atomic emission spectrometry the previously described atomic absorption spectrometry is sometimes useful. [Pg.357]

Until now, little attention has been given to the analysis of ancient copper alloys with LA-ICP-MS. This type of material is usually analyzed with fast or instrumental neutron activation analysis (FNAA or INAA), particle induced X-ray emission (PIXE), X-ray fluorescence (XRF), inductively coupled plasma-atomic emission spectrometry or inductively coupled plasma-atomic absorption spectrometry (ICP-AES or ICP-AAS). Some of these techniques are destructive and involve extensive sample preparation, some measure only surface compositions, and some require access to a cyclotron or a reactor. LA-ICP-MS is riot affected by any of these inconveniences. We propose here an analytical protocol for copper alloys using LA-ICP-MS and present its application to the study of Matisse bronze sculptures. [Pg.337]

Since the mid-1960s, a variety of analytical chemistry techniques have been used to characterize obsidian sources and artifacts for provenance research (4, 32-36). The most common of these methods include optical emission spectroscopy (OES), atomic absorption spectroscopy (AAS), particle-induced X-ray emission spectroscopy (PIXE), inductively coupled plasma-mass spectrometry (ICP-MS), laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray fluorescence spectroscopy (XRF), and neutron activation analysis (NAA). When selecting a method of analysis for obsidian, one must consider accuracy, precision, cost, promptness of results, existence of comparative data, and availability. Most of the above-mentioned techniques are capable of determining a number of elements, but some of the methods are more labor-intensive, more destructive, and less precise than others. The two methods with the longest and most successful histoty of success for obsidian provenance research are XRF and NAA. [Pg.527]

The most suitable techniques for the rapid, accurate determination of the elemental content of foods are based on analytical atomic spectrometry, for example, atomic absorption spectrometry (AAS), atomic emission spectrometry (AES), and mass spectrometry, the most popular modes of which are Game (F), electrothermal atomization (ET), and hydride generation (HG) AAS, inductively coupled plasma (ICP), microwave-induced plasma (MIP), direct current plasma (DCP) AES, and ICP-MS. Challenges in the determination of elements in food include a wide range of concentrations, ranging from ng/g to percent levels, in an almost endless combination of analytes with matrix speci be matrices. [Pg.20]

The most important analytical techniques which are used in multielement trace analysis are ICP-MS, atomic absorption spectrometry (AAS) and ICP atomic emission spectrometry (AES). NAA is applied as reference method in order to establish certibed values. The regular atomic spectrometry update on clinical and biological materials, foods and beverages (ASU review) gives an overview of the recent developments in elemental analysis of food and beverages [81]. [Pg.206]

The most widely used spectrochemical methods are flame atomic absorption spectrometry (FAAS), electrothermal atomization atomic absorption spectrometry (ETA-AAS), and inductively coupled plasma atomic emission spectrometry (ICP-AES). Some work has been performed using inductively coupled plasma mass spectrometry (ICP-MS) and the unique properties of Hg have allowed the use of cold vapor (CV) A AS. It is beyond the scope of this chapter to describe these well-established and well-accepted spectrochemical techniques. The reader is referred to several excellent texts which describe in detail the basic principles, instrumentation, and method development of these analytical techniques [1-4]. The most toxic elements, such as As, Cd, Cr, Pb, and particularly Hg have been the most widely studied. Other metals, such as Ba, Cu, Fe, Mn, V, and Zn, have also been investigated. [Pg.439]

For rapid analysis during the production process atomic absorption is mainly of indirect value because, due to the sequential character of the technique, it cannot be used for complete steel or slag analysis in a two to three minute period. The analytical requirements for the testing of rapid continuous production processes are fulfilled by the techniques of emission and X-ray spectrometry. These techniques are characterised by great speed, high precision and simultaneous multi-element analysis. Accuracy must, however, be constantly checked with a variety of special calibration samples. This requires the determination of the true concentrations of the calibration samples with chemical methods of solution analysis, whose precision is often only equal to or, when compared with X-ray spectrometry, frequently poorer. Chemical analysis is, however, the basis of all comparisons, and must be repeated frequently for the determination of the true concentrations. Atomic absorption, with its relatively good precision, has greatly simplified the analytical control of numerous elements. [Pg.212]


See other pages where Analytical techniques atomic absorption/emission spectrometry is mentioned: [Pg.1255]    [Pg.341]    [Pg.334]    [Pg.116]    [Pg.334]    [Pg.142]    [Pg.171]    [Pg.335]    [Pg.125]    [Pg.629]    [Pg.8]    [Pg.537]    [Pg.36]    [Pg.162]    [Pg.537]    [Pg.225]    [Pg.335]    [Pg.372]    [Pg.434]    [Pg.44]    [Pg.381]    [Pg.171]    [Pg.125]    [Pg.629]    [Pg.30]    [Pg.361]    [Pg.363]    [Pg.490]    [Pg.324]    [Pg.130]   
See also in sourсe #XX -- [ Pg.308 ]




SEARCH



ATOMIC ABSORPTION-SPECTROMETRY 1 Technique

Absorption emission

Absorption spectrometry

Absorption techniques

Absorptive technique

Analyte atom

Analyte emission

Analytical atomic absorption

Analytical techniques

Atomic Emission Techniques

Atomic absorption spectrometry

Atomic absorption spectrometry atomizers

Atomic emission

Atomic emission spectrometry

Emission techniques

Spectrometry emission

© 2024 chempedia.info