Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Toxicity metal catalysts

The biocatalytic reduction of carboxylic acids to their respective aldehydes or alcohols is a relatively new biocatalytic process with the potential to replace conventional chemical processes that use toxic metal catalysts and noxious reagents. An enzyme known as carboxylic acid reductase (Car) from Nocardia sp. NRRL 5646 was cloned into Escherichia coli BL21(DE3). This E. coli based biocatalyst grows faster, expresses Car, and produces fewer side products than Nocardia. Although the enzyme itself can be used in small-scale reactions, whole E. coli cells containing Car and the natural cofactors ATP and NADPH, are easily used to reduce a wide range of carboxylic acids, conceivably at any scale. The biocatalytic reduction of vanillic acid to the commercially valuable product vanillin is used to illustrate the ease and efficiency of the recombinant Car E. coli reduction system." A comprehensive overview is given in Reference 6, and experimental details below are taken primarily from Reference 7. [Pg.295]

The functionalization of C=C double bonds to furnish epoxides is a challenging field of research. Ideally, environmentally friendly oxidants such as molecular oxygen or hydrogen peroxide should be used in combination with cheap and non-toxic metal catalysts (Scheme 3.4) (iodosobenzene can also be used as oxidant the disadvantage is the formation of one equivalent of iodobenzene as waste. For an example, see [49]). [Pg.80]

For alkene dihydroxylations, heavy metal oxides such as 0s04 and Ru04 can be applied. They are efficient catalysts but their toxitity makes their use less desirable and there is a dear need for non-toxic metal catalysts. Nevertheless, only a few reports have focused on the use of iron catalysts for alkene dihydroxylations. All systems described so far try to model the naturally occurring Rieske dioxygenase, an enzyme responsible for the biodegradation of arenes via cis-dihydroxylation by soil baderia [66]. [Pg.82]

This remarkable reaetion is relevant first because the process did not require an expensive and toxic metal catalyst and second because an aromatic hydrocarbon ArH (mesitylene in the reported example) was directly used as the nucleophile, in contrast to what happens with thermal reactions, where a nucleophilic organometallic derivative Ar M is used, as in the Stille (M = SnR3), Kumada (M = MgX) and Suzuki [M = 11(011)2] reactions. [Pg.93]

This article updates an earlier version in the first edition of this book and summarizes the recent developments in the area of osmium-catalyzed dihydroxylations which bring this transformation closer to a green reaction . Special emphasis is placed on the use of new reoxidants and recycling of the osmium catalyst Moreover, less toxic metal catalysts such as ruthenium and iron are also discussed. [Pg.2]

Most general-purpose release agents have been developed for this market in part because of their low toxicity and chemical inertness and do not usually present health and safety problems. Some of the solvent dispersions require appropriate care in handling volatile solvents, and many supphers are offering water-based alternatives. Some of the sohds, particularly finely divided hydrophobic sohds, can also present inhalation problems. Some of the metallic soaps are toxic, although there is a trend away from the heavier, more toxic metals such as lead. The reactive type of release coating with monomers, prepolymers, and catalysts often presents specific handling difficulties. The potential user with health and safety questions is advised to consult the manufacturer directly. [Pg.102]

Reclamation, Disposal, and Toxicity. Removal of poisons and inorganic deposits from used catalysts is typically difficult and usually uneconomical. Thus some catalysts are used without regeneration, although they may be processed to reclaim expensive metal components. Used precious metal catalysts, including automobile exhaust conversion catalysts, are treated (often by the suppHers) to extract the metals, and recovery efficiencies are high. Some spent hydroprocessing catalysts may be used as sources of molybdenum and other valuable metals. [Pg.174]

Some catalysts are ha2ardous materials, or they react to form ha2ardous substances. For example, catalysts used for hydrogenation of carbon monoxide form volatile metal carbonyl compounds such as nickel carbonyl, which are highly toxic. Many catalysts contain heavy metals and other ha2ardous components, and environmentally safe disposal has become an increasing concern and expense. [Pg.174]

Toxic heavy metals and ions, eg, Pb, Hg, Bi, Sn, Zn, Cd, Cu, and Fe, may form alloys with catalytic metals (24). Materials such as metallic lead, ziac, and arsenic react irreversibly with precious metals and make the surface unavailable for catalytic reactions. Poisoning by heavy metals ordinarily destroys the activity of a precious-metal catalyst (8). [Pg.508]

High levels of sulfur not only form dangerous oxides, but they also tend to poison the catalyst in the catalytic converter. As it flows over the catalyst in the exliaust system, the sulfur decreases conversion efficiency and limits the catalyst s oxygen storage capacity. With the converter working at less than maximum efficiency, the exhaust entering the atmosphere contains increased concentrations, not only of the sulfur oxides but also, of hydrocarbons, nitrogen oxides, carbon monoxides, toxic metals, and particulate matter. [Pg.552]

Almost all the materials which are being considered as components in automobile exhaust catalyst are somewhat toxic (74)- Most of the compounds considered are low vapor pressure solids which can only escape from the exhaust system as very fine airbone dust particles formed by catalyst attrition. A few compounds, such as the highly toxic metal carbonyls and ruthenium tetroxides, are liquid under ambient conditions and have boiling points less than 100 °C. These compounds are not present in... [Pg.81]

The oxidation of CO at low temperatures was the first reaction discovered as an example of the highly active catalysis by gold [1]. Carbon monoxide is a very toxic gas and its concentration in indoor air is regulated to 10-50 ppm depending on the conditions [61]. An important point is that CO is the only gas that cannot be removed from indoor air by gas adsorption with activated carbon. On the other hand, metal oxides or noble metal catalysts can oxidize CO at room temperature. [Pg.66]

Precious metals have faced a significant price increase and the fear of depletion. By contrast, iron is a highly abundant metal in the crust of the earth (4.7 wt%) of low toxicity and price. Thus, it can be defined as an environmentally friendly material. Therefore, iron complexes have been studied intensively as an alternative for precious-metal catalysts within recent years (for reviews of iron-catalyzed organic reactions, see [12-20]). The chemistry of iron complexes continues to expand rapidly because these catalysts play indispensable roles in today s academic study as well as chemical industry. [Pg.29]

The reduction of organic halides is of practical importance for the treatment of effluents containing toxic organic halides and also for valuable synthetic applications. Direct electroreduction of alkyl and aryl halides is a kinetically slow process that requires high overpotentials. Their electrochemical activation is best achieved by use of electrochemically generated low-valent transition metal catalysts. Electrocatalytic coupling reactions of organic halides were reviewed in 1997.202... [Pg.485]

Poisoning is caused by chemisorption of compounds in the process stream these compounds block or modify active sites on the catalyst. The poison may cause changes in the surface morphology of the catalyst, either by surface reconstruction or surface relaxation, or may modify the bond between the metal catalyst and the support. The toxicity of a poison (P) depends upon the enthalpy of adsorption for the poison, and the free energy for the adsorption process, which controls the equilibrium constant for chemisorption of the poison (KP). The fraction of sites blocked by a reversibly adsorbed poison (0P) can be calculated using a Langmuir isotherm (equation 8.4-23a) ... [Pg.215]

An enzyme is a protein that speeds up a biochemical reaction without itself experiencing any overall change. In chemical language, such a compound is called a catalyst and is said to catalyze a reaction. Chemists employ a variety of compounds as laboratory catalysts, and many industrial chemical processes would be impracticably slow without catalysis. An automobile s catalytic converter makes use of a metal catalyst to accelerate conversion of toxic carbon monoxide in the exhaust to carbon dioxide. Similarly, our bodies biochemical machinery effects thousands of different reactions that would not proceed without enzymatic catalysis. Some enzymes are exquisitely specific, catalyzing only one particular reaction of a single compound. Many others have much less exacting requirements and consequently exhibit broader effects. Specific or nonspecific, enzymes can make reactions go many millions of times faster than they would without catalysis. [Pg.152]

Many laboratory and even some industrial scale oxidations were historically conducted using stoichiometric, toxic, metal-based oxidants such as KMn04, K2Cr207 and 0s04 [2], However, the use of small-molecule sources of oxygen is preferable from both economic and environmental viewpoints. These oxidants include 02, H202 and NaOCl, with an additional metal catalyst if required. [Pg.181]

The phase-transfer catalysed reaction of nickel tetracarbonyl with sodium hydroxide under carbon monoxide produces the nickel carbonyl dianions, Ni,(CO) 2- and Ni6(CO)162, which convert allyl chloride into a mixture of but-3-enoic and but-2-enoic acids [18]. However, in view of the high toxicity of the volatile nickel tetracarbonyl, the use of the nickel cyanide as a precursor for the carbonyl complexes is preferred. Pretreatment of the cyanide with carbon monoxide under basic conditions is thought to produce the tricarbonylnickel cyanide anion [19], as the active metal catalyst. Reaction with allyl halides, in a manner analogous to that outlined for the preparation of the arylacetic acids, produces the butenoic acids (Table 8.7). [Pg.374]

Like catalytic cracking, hydrocracking processes generate toxic metal compounds, many of which are present in spent catalyst sludge and catalyst fines generated from catalytic cracking and hydrocracking. These include metals such as nickel, cobalt, and molybdenum. [Pg.100]

The most important metalliferous liquid effluents where solvent extraction could be applied are from the various metal finishing operations plating, pickling, etching, and the wash waters arising from the cleaning of work pieces. In the case of solids, in addition to scrap metal and alloy wastes from manufacturing operations, a number of other products use valuable and toxic metals and offer potential applications, e.g., spent automobile catalysts, Ni/Cd batteries, etc. [Pg.611]

Although exhaustive efforts have been made in the search for biologically acceptable catalysts, there are only a few examples of low toxicity, which mainly lead to atactic polymers of little practical use. Another route to gain control over the tacticity of PHB is the transformation of cheap building blocks to enantiomericaUy pure p-BL, which can be distilled off from the catalyst and polymerized with retention of the stereochemistry by ecofriendly initiators. This route combines many advantages. At first, even toxic metal centers can be chosen since the product can easily be separated from the catalyst and secondly, any tacticity of the polymer will be available by simply mixing enantiopure p-BL with the racemic mixture in the desired ratio. In this manner a fine-tuning of the mechanical properties becomes possible and easily performable (Fig. 36). [Pg.80]

Common alcohol oxidation methods employ stoichiometric amounts of toxic and reactive oxidants like Cr03, hypervalent iodine reagents (Dess-Martin) and peracids that pose severe safety and environmental hazards in large-scale industrial reactions. Therefore, a variety of catalytic methods for the oxidation of alcohols to aldehydes, ketones or carboxylic acids have been developed employing hydrogen peroxide or alkyl hydroperoxides as stoichiometric oxygen sources in the presence of catalytic amounts of a metal catalyst. The commonly used catalysts for alcohol oxidation are different MoAV(VI), Mn(II), Cr(VI), Re(Vn), Fe(II) and Ru complexes . A selection of published known alcohol oxidations with different catalysts will be presented here. [Pg.492]


See other pages where Toxicity metal catalysts is mentioned: [Pg.103]    [Pg.1]    [Pg.80]    [Pg.679]    [Pg.109]    [Pg.268]    [Pg.176]    [Pg.249]    [Pg.103]    [Pg.1]    [Pg.80]    [Pg.679]    [Pg.109]    [Pg.268]    [Pg.176]    [Pg.249]    [Pg.76]    [Pg.465]    [Pg.294]    [Pg.294]    [Pg.534]    [Pg.950]    [Pg.73]    [Pg.177]    [Pg.183]    [Pg.279]    [Pg.48]    [Pg.232]    [Pg.253]    [Pg.269]    [Pg.303]    [Pg.818]    [Pg.283]    [Pg.499]    [Pg.208]    [Pg.768]    [Pg.332]   
See also in sourсe #XX -- [ Pg.341 ]




SEARCH



Toxic metals

Toxicity, metal

© 2024 chempedia.info