Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Active metal

Table 13 shows some of the developmental products that have EPA appHcations pending and may be available in the near future. Sea Nine is a variation on the very successflil isothiazolone chemistry. It is claimed to be an improvement over metallic actives used for antifouling paint and wood preservation (46,47). Decylthioethylamine and its water-soluble hydrochloride are claimed to be especially effective at controlling biofilm in cooling water appHcations (48—50). The hydroxymethylpyra2ole shown is also suggested to have properties that are well suited to the protection of aqueous products or emulsions (51,52). [Pg.101]

However, because of the high temperature nature of this class of peroxides (10-h half-life temperatures of 133—172°C) and their extreme sensitivities to radical-induced decompositions and transition-metal activation, hydroperoxides have very limited utiUty as thermal initiators. The oxygen—hydrogen bond in hydroperoxides is weak (368-377 kJ/mol (88.0-90.1 kcal/mol) BDE) andis susceptible to attack by higher energy radicals ... [Pg.227]

With transition-metal activators, the initiation process is postulated as ... [Pg.228]

The reaction rate of fumarate polyester polymers with styrene is 20 times that of similar maleate polymers. Commercial phthaHc and isophthaHc resins usually have fumarate levels in excess of 95% and demonstrate full hardness and property development when catalyzed and cured. The addition polymerization reaction between the fumarate polyester polymer and styrene monomer is initiated by free-radical catalysts, commercially usually benzoyl peroxide (BPO) and methyl ethyl ketone peroxide (MEKP), which can be dissociated by heat or redox metal activators into peroxy and hydroperoxy free radicals. [Pg.317]

Authors are designed row sensitive and selective test-systems for analysis of heavy metals, active chlorine, phenols, nitrates, nitrites, phosphate etc. for analysis of objects of an environment and for control of ions Ee contents in the technological solutions of KH PO, as well as for testing some of pharmacological psychotropic daigs alkaloids (including opiates), cannabis as well as pharmaceutical preparations of phenothiazines, barbiturates and 1,4-benzodiazepines series too. [Pg.374]

Many enzymes require metal ions for maximal activity. If the enzyme binds the metal very tightly or requires the metal ion to maintain its stable, native state, it is referred to as a metalloenzyme. Enzymes that bind metal ions more weakly, perhaps only during the catalytic cycle, are referred to as metal activated. One role for metals in metal-activated enzymes and metalloenzymes is to act as electrophilic catalysts, stabilizing the increased electron density or negative charge that can develop during reactions. Among the enzymes that function in this... [Pg.511]

A number of indices relate metal activity to hydrogen and coke production. (These indices predate the use of metal passivation in the FCC process but are still reliable). The most commonly used index is 4 X Nickel + Vanadium. This indicates that nickel is four times as actiw as vanadium in producing hydrogen. Other indices [9] used are ... [Pg.63]

Fig. 1.41 Schematic anodic polarisation curves for a passivatable metal showing the effect of a passivating agent that has no specific cathodic action, but forms a sparingly soluble salt with the metal cation, a without the passivating agent, b with the passivating agent. The passive current density, the active/passive transition and the critical current density are all lowered in b. The effect of the cathodic reaction c, is to render the metal active in case a, and passive... Fig. 1.41 Schematic anodic polarisation curves for a passivatable metal showing the effect of a passivating agent that has no specific cathodic action, but forms a sparingly soluble salt with the metal cation, a without the passivating agent, b with the passivating agent. The passive current density, the active/passive transition and the critical current density are all lowered in b. The effect of the cathodic reaction c, is to render the metal active in case a, and passive...
Passivation at the metal/active mass interface, or of the active mass itself can also lead to failure. Detrimental changes in the morphology of the active mass and microstructural changes in the grid material can also occur. [Pg.736]

Fig. 7.77 Thermodynamic stability diagram for the Fe-Ni-Cr system at 1 143 K, assuming metal activities to be unity.-, phase boundaries involving Fe —phase boundaries involving Ni ----, phase boundaries involving Cr. The location of environments 1, 2, 3, and 4 are... Fig. 7.77 Thermodynamic stability diagram for the Fe-Ni-Cr system at 1 143 K, assuming metal activities to be unity.-, phase boundaries involving Fe —phase boundaries involving Ni ----, phase boundaries involving Cr. The location of environments 1, 2, 3, and 4 are...
Two polymer-supported reagents have been developed for the oxidation of sulphoxides to sulphones these involve peracid groups150, and bound hypervalent metals activated by t-butyl hydroperoxide151,152. [Pg.985]

This discusses the metal-activated reactivity of ligands. [Pg.195]

Acknowledgements. The authors thank the Deutsche Forschungsgemeinschaft (especially the SFB 347 Selective reactions of metal-activated molecules and the Graduiertenkolleg Electron density ) and the Fonds der Chemischen Industrie for generous financial support. D S wants to thank the students involved in phosphorus chemistry over the years (A Steiner, H Gornitzka, S Wingerter, M Pfeiffer, A Murso, T Stey, F Baier). Without their tremendous contributions, this chapter would have been impossible. [Pg.112]

Identify students prior knowledge about the metal activity series. [Pg.160]

Metal deactivators—Organic compounds capable of forming coordination complexes with metals are known to be useful in inhibiting metal-activated oxidation. These compounds have multiple coordination sites and are capable of forming cyclic strucmres, which cage the pro-oxidant metal ions. EDTA and its various salts are examples of this type of metal chelating compounds. [Pg.467]

Cofactors serve functions similar to those of prosthetic groups but bind in a transient, dissociable manner either to the enzyme or to a substrate such as ATP. Unlike the stably associated prosthetic groups, cofactors therefore must be present in the medium surrounding the enzyme for catalysis to occur. The most common cofactors also are metal ions. Enzymes that require a metal ion cofactor are termed metal-activated enzymes to distinguish them from the metalloenzymes for which metal ions serve as prosthetic groups. [Pg.50]

He MM, SL Clugston, JF Honek, BW Mattews (2000) Determination of the structure of Escherichia coli gly-oxalase 1 suggests a structural basis for differential metal activation. Biochemistry 39 8719-8727. [Pg.190]

We have explored rare earth oxide-modified amorphous silica-aluminas as "permanent" intermediate strength acids used as supports for bifunctional catalysts. The addition of well dispersed weakly basic rare earth oxides "titrates" the stronger acid sites of amorphous silica-alumina and lowers the acid strength to the level shown by halided aluminas. Physical and chemical probes, as well as model olefin and paraffin isomerization reactions show that acid strength can be adjusted close to that of chlorided and fluorided aluminas. Metal activity is inhibited relative to halided alumina catalysts, which limits the direct metal-catalyzed dehydrocyclization reactions during paraffin reforming but does not interfere with hydroisomerization reactions. [Pg.563]

As an additional probe of metal activity, we monitored benzene hydrogenation activity. As seen in Figure 9, Pt-containing rare earth catalysts have lower hydrogenation activity than chlorided alumina catalysts this result reflects inhibition of metal activity on these supports relative to conventional transitional alumina supports. Whereas the acid strength can be adjusted close to that of chlorided and flourided aluminas, metal activity is somewhat inhibited on these catalysts relative to halided aluminas. This inhibition is not due to dispersion, and perhaps indicates a SMSI interaction between Pt and the dispersed Nd203 phase. [Pg.569]

Metallothioneins (MTs) are small proteins with an especial affinity for the binding of various heavy metals active in a wide range of reactions [95-97]. Besides their role in... [Pg.297]

Can this demand for a significant number of metal active sites be further quantified by a general expression in terms of cathode potential demand The answer is, in principle, yes, although the dependence of the relative populations of metal surface sites and oxidized surface sites on cathode potential could depend on (H20)/r-oh d somewhat different way, depending on the degree to which the... [Pg.25]

L.Yu. Kupriyanov, Vzaimodeistvie Metastabilnykh Atomov Inert-nykh Gazov s Chstoy i Aktivirovannoy Metallami Povrkhostjru Okislov (Interaction of Rare Gas Metastable Atoms with Pure and Metal-Activated Surface of Oxides) Dissertation, Cand. Sci. (Phys.-Math.)Moscow, 1985, 140 p. [Pg.345]


See other pages where Active metal is mentioned: [Pg.731]    [Pg.478]    [Pg.133]    [Pg.228]    [Pg.164]    [Pg.302]    [Pg.49]    [Pg.124]    [Pg.160]    [Pg.275]    [Pg.45]    [Pg.122]    [Pg.570]    [Pg.570]    [Pg.571]    [Pg.20]    [Pg.248]    [Pg.328]    [Pg.340]    [Pg.341]    [Pg.697]    [Pg.703]    [Pg.148]    [Pg.549]   
See also in sourсe #XX -- [ Pg.1269 ]




SEARCH



© 2024 chempedia.info