Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

With adsorption

The state of an adsorbate is often described as mobile or localized, usually in connection with adsorption models and analyses of adsorption entropies (see Section XVII-3C). A more direct criterion is, in analogy to that of the fluidity of a bulk phase, the degree of mobility as reflected by the surface diffusion coefficient. This may be estimated from the dielectric relaxation time Resing [115] gives values of the diffusion coefficient for adsorbed water ranging from near bulk liquids values (lO cm /sec) to as low as 10 cm /sec. [Pg.589]

All tliree types of reactions begin with adsorption of species onto a surface from the gas phase. [Pg.301]

We therefore felt it timely to attempt a critical exposition and assessment of the common methods for the evaluation of the surface area and pore size distribution of solids from adsorption measurements. Our main concern has therefore been with the use of adsorption data for these purposes rather than with adsorption per se and it is for this reason that our treatment of theoretical matters, whilst sufficiently detailed to bring out the nature of the assumptions underlying the various methods, is not exhaustive we have not set out to write a text-book or a treatise on adsorption, and our choice of material from the literature has been dictated solely by its seeming suitability for the explanation or illustration of the topic under discussion. [Pg.293]

Dispersion forces are always present and in the absence of any stronger force will determine equihbrium behavior, as with adsorption of molecules with no dipole or quadrupole moment on nonoxidized carbons and silicahte. [Pg.1503]

Last time development of methods of iodine determination, which include preliminary sorption preconcentration of microcomponents and their subsequent determination in phase of concentrate get great practical significance. Silica gel (SG) with adsorptively modified quaternary ammonium salts (QAS) gets properties of anion-exchange resin. The sorbents modified in this way can be used successfully for determination of different anions. [Pg.155]

Solvent recovery with adsorption is most feasible when the reusable solvent is valuable and is readily separated from the regeneration agent. When steam-regenerated activated-carbon adsorption is employed, the solvent should be immiscible with water. If more than one compound is to be recycled, the compounds should be easily separated or reused as a mixture. Only very large solvent users can afford the cost of solvent purification by distillation. ... [Pg.1260]

FIG. 4 Normalized oxygen density profile perpendicular to the surface from simulations of pure water with adsorption energies of 12, 24, 36, and 48 kJ/mol (from bottom to top). The lower curves are shifted downwards by 0.5, 1.0, and 1.5 units. The inset shows the height of the first (diamonds) and second peak (crosses) as a function of adsorption energy. Water interacts with the surface through a Morse potential. (From Ref. 98.)... [Pg.357]

A more justifiable reason for the added cost and analysis time that a guard column brings is to avoid a problem with adsorption of sample matrix components on the stationary phase of the analytical GPC columns. In many industrial laboratories, the usual GPC experiment deals with fairly well-controlled sample matrices that may not have absorbable components and therefore rarely require a guard column. In situations where slow adsorption of matrix components may occur on GPC columns, it may make better economic sense to periodically replace the first column of a set. Nevertheless, in... [Pg.548]

YHiile THF is the solvent of choice for ordinary acrylate ester polymers, there are numerous monomers that can be incorporated into those acrylic polymers that cause problems either with solubility or with adsorption onto the stationary phase. In some cases, these problems can be overcome by switching to a solvent other than THF. [Pg.553]

Problems with adsorption onto the packing material are more common in aqueous GPC than in organic solvents. Adsorption onto the stationary phase can occur even for materials that are well soluble in water if there are specific interactions between the analyte and the surface. A common example of such an interaction is the analysis of pEG on a silica-based column. Because of residual silanols on the silica surface, hydrogen bonding can occur and pEG cannot be chromatographed reliably on silica-based columns. Eikewise, difficulties are often encountered with polystyrenesulfonate on methacrylate-based columns. [Pg.556]

Figure 11.15 Cation-exchange mia O-LC analysis of a mixture of model proteins (a) the original sample consisting of myoglobin (M), cytochrome C (C) and lysozyme (L) (b) and (c) proteins adsorbed on to and then released from the polyaaylic acid coated fibre with exti ac-tion times of 5 and 240 s, respectively. Reprinted from Journal of Microcolumn Separations, 8, J.-L. Liao et al., Solid phase mia O exti action of biopolymers, exemplified with adsorption of basic proteins onto a fiber coated with polyaaylic acid, pp. 1-4, 1996, with permission from Jolm Wiley Sons, New York. Figure 11.15 Cation-exchange mia O-LC analysis of a mixture of model proteins (a) the original sample consisting of myoglobin (M), cytochrome C (C) and lysozyme (L) (b) and (c) proteins adsorbed on to and then released from the polyaaylic acid coated fibre with exti ac-tion times of 5 and 240 s, respectively. Reprinted from Journal of Microcolumn Separations, 8, J.-L. Liao et al., Solid phase mia O exti action of biopolymers, exemplified with adsorption of basic proteins onto a fiber coated with polyaaylic acid, pp. 1-4, 1996, with permission from Jolm Wiley Sons, New York.
J.-L. Liao, C-M. Zeng, S. Hjeiten and J. Pawliszyn, Solid phase micro exti action of biopolymers, exemplified with adsorption of basic proteins onto a fiber coated with polyacrylic acid , ]. Microcolumn Sep. 8 1-4. (1996)... [Pg.300]

Early studies on oxide films stripped from iron showed the presence of chromium after inhibition in chromate solutionand of crystals of ferric phosphate after inhibition in phosphate solutions. More recently, radio-tracer studies using labelled anions have provided more detailed information on the uptake of anions. These measurements of irreversible uptake have shown that some inhibitive anions, e.g. chromateand phosphate are taken up to a considerable extent on the oxide film. However, other equally effective inhibitive anions, e.g. benzoate" pertechnetate and azelate , are taken up to a comparatively small extent. Anions may be adsorbed on the oxide surface by interactions similar to those described above in connection with adsorption on oxide-free metal surfaces. On the oxide surface there is the additional possibility that the adsorbed anions may undergo a process of ion exchange whereby... [Pg.817]

DETERMINATION OF MIXTURES OF HALIDES WITH ADSORPTION INDICATORS... [Pg.352]

When a precipitate separates from a solution, it is not always perfectly pure it may contain varying amounts of impurities dependent upon the nature of the precipitate and the conditions of precipitation. The contamination of the precipitate by substances which are normally soluble in the mother liquor is termed co-precipitation. We must distinguish between two important types of co-precipitation. The first is concerned with adsorption at the surface of the particles exposed to the solution, and the second relates to the occlusion of foreign substances during the process of crystal growth from the primary particles. [Pg.422]

A possible approach to interpretation of a low-frequency region of the G ( ) dependence of filled polymers is to compare it with a specific relaxation mechanism, which appears due to the presence of a filler in the melt. We have already spoken about two possible mechanisms — the first, associated with adsorption phenomena on a filler s surface and the second, determined by the possibility of rotational diffusion of anisodiametrical particles with characteristic time D 1. But even if these effects are not taken into account, the presence of a filler can be related with the appearance of a new characteristic time, Xf, common for any systems. It is expressed in the following way... [Pg.94]

The most significant changes associated with adsorption which have been observed to date were the displacements (45) of Raman fundamentals of ethyne on adsorption on zeolite 4A (see Table IX). Such changes constitute a useful monitor of adsorbate-adsorbent interaction for various adsorbents. The appearance of the Raman spectrum of ethyne on zeolites A suggests an... [Pg.335]

Metal/molten salt interfaces have been studied mainly by electrocapillary833-838 and differential capacitance839-841 methods. Sometimes the estance method has been used.842 Electrocapillary and impedance measurements in molten salts are complicated by nonideal polarizability of metals, as well as wetting of the glass capillary by liquid metals. The capacitance data for liquid and solid electrodes in contact with molten salt show a well-defined minimum in C,E curves and usually have a symmetrical parabolic form.8 10,839-841 Sometimes inflections or steps associated with adsorption processes arise, whose nature, however, is unclear.8,10 A minimum in the C,E curve lies at potentials close to the electrocapillary maximum, but some difference is observed, which is associated with errors in comparing reference electrode (usually Pb/2.5% PbCl2 + LiCl + KC1)840 potential values used in different studies.8,10 It should be noted that any comparison of experimental data in aqueous electrolytes and in molten salts is somewhat questionable. [Pg.147]

The reaction and desorption steps are assumed to be so fast compared with adsorption that they achieve equilibrium ... [Pg.359]

An analytical solution is possible when the reaction is first order e.g., a reaction of the form A —> P with adsorption as the rate-controlling step. Then Equation (10.3) becomes... [Pg.363]

As noted before, thin film lubrication (TFL) is a transition lubrication state between the elastohydrodynamic lubrication (EHL) and the boundary lubrication (BL). It is widely accepted that in addition to piezo-viscous effect and solid elastic deformation, EHL is featured with viscous fluid films and it is based upon a continuum mechanism. Boundary lubrication, however, featured with adsorption films, is either due to physisorption or chemisorption, and it is based on surface physical/chemical properties [14]. It will be of great importance to bridge the gap between EHL and BL regarding the work mechanism and study methods, by considering TFL as a specihc lubrication state. In TFL modeling, the microstructure of the fluids and the surface effects are two major factors to be taken into consideration. [Pg.64]

H2S adsorption on the (2x2)-S covered Pt(lll) surface at IlOK contrasts with adsorption on the clean surface. On the (2x2)-S surface no complete dissociation Is observed at low temperature Instead, H2S partially dissociates to form an adsorbed SH Intermediate with a characteristic bend vibration at 585 cm . Heating adsorbed SH on the (2x2)-S covered surface leads to a SH+H recombination reaction not observed on clean Ft. The recombination process removes the excess SH so that the stable, high coverage (/3 X /3)R30 -S lattice can be formed. [Pg.202]

Electrochemical reaction rates are also influenced by substances which, although not involved in the reaction, are readily adsorbed on the electrode surface (reaction products, accidental contaminants, or special additives). Most often this influence comes about when the foreign species I by adsorbing on the electrode partly block the surface, depress the adsorption of reactant species j, and thus lower the reaction rate. On a homogeneous surface and with adsorption following the Langmuir isotherm, a factor 10, will appear in the kinetic equation which is the surface fraction free of foreign species 1 ... [Pg.249]

Adopting the current standpoint that the process of chemisorption can be treated as chemical reaction of adsorption particle with adsorption center accounting for effect of both the reaction on the whole adsorbent and adsorbent on the reaction proper, i.e. accounting for the... [Pg.88]

In conjunction with latest progress in quantum chemistry the availability of vast experimental data makes it possible to anal)rze the character of possible centers of adsorption of particles of various gases as well as type, chemical and electron properties of surface compounds formed during interaction of adsorption particles with adsorption centers. [Pg.93]

Considering chemisorption as chemical interaction, in our case interaction of oxygen with adsorption centers which are modeled by surface-adjacent superstoichiometric metal atoms we can write down... [Pg.125]


See other pages where With adsorption is mentioned: [Pg.312]    [Pg.182]    [Pg.391]    [Pg.667]    [Pg.41]    [Pg.88]    [Pg.286]    [Pg.317]    [Pg.345]    [Pg.544]    [Pg.584]    [Pg.63]    [Pg.507]    [Pg.206]    [Pg.277]    [Pg.477]    [Pg.22]    [Pg.50]    [Pg.73]    [Pg.149]    [Pg.174]    [Pg.207]    [Pg.270]    [Pg.273]   
See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Adsorption Entropy on Heterogeneous Surfaces with Surface Diffusion

Adsorption and desorption with interactions

Adsorption change with surface pretreatment

Adsorption effects, with ions

Adsorption impedance Coupled with

Adsorption in a Vessel with Continuous Flow

Adsorption interference with analysis

Adsorption of (Bio)Polymers, with Special Emphasis on Globular Proteins

Adsorption problems with

Adsorption reaction, with

Adsorption reaction, with partial charge

Adsorption reaction, with transfer

Adsorption studies with microbalance

Adsorption therapy with activated

Adsorption trends with increasing salt

Adsorption trends with increasing salt concentration

Adsorption with Conformation Changes in the Adsorbent Molecules

Adsorption with Cross Flow of Gas and Adsorbent Phases

Adsorption with Dissociation

Adsorption with direct interactions

Adsorption with minute samples

Adsorption with multiple occupancy

Adsorption, comparison with chemisorption

Basic arrangement of adsorptive solvent recovery with steam desorption

Charge transfer with adsorption

Charged Surface with Ion Adsorption

Chemical changes associated with adsorption

Copolymer with adsorption

Distillation, comparison with adsorption

EVLS in Connection with Adsorptive Stripping Technique

Electrostatic Adsorption with Metal Respeciation

Excess Charge Associated with the Specific Adsorption of Ionic Porphyrins

Fixed bed adsorption with circulating hot gas desorption

Full linear model, with adsorption-desorption

Hydrogen adsorption with classical potentials

Langmuir adsorption with lateral interactions

Localized adsorption with interactions

Mass transfer with physical adsorption

Mobile adsorption with interactions

Molecular Simulations Applied to Adsorption on and Reaction with Carbon

Organic molecules with acidic hydrogens, adsorption

Other Adsorption Experiments with the Field Emission Microscope

Photoluminescence adsorption with

Polymeric Materials with Ionic Functional Groups and Their Protein Adsorptive Behavior

Processes Combining Distillation with Adsorption

Simulation studies with adsorption

Simulation studies with adsorption column

Single Stage Adsorption in a Vessel Adsorber with Adsorbent Packing

Solvent recovery with adsorption wheels

Structural perturbation with adsorption

Transfer with Adsorption on the Electrode

Vacuum microbalance adsorption studies with

Variation of adsorption-energy with

© 2024 chempedia.info