Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ambient conditions

Ambient conditions include factors such as humidity and temperature, air velocity in the spinning chamber, and atmospheric pressure. Humidity primarily controls the formation of pores on the surface of the fibers. Above a certain threshold level of humidity, pores begin to appear and, as the level increases, so do the number and size of the pores. [Pg.167]


Condensable hydrocarbon components are usually removed from gas to avoid liquid drop out in pipelines, or to recover valuable natural gas liquids where there is no facility for gas export. Cooling to ambient conditions can be achieved by air or water heat exchange, or to sub zero temperatures by gas expansion or refrigeration. Many other processes such as compression and absorption also work more efficiently at low temperatures. [Pg.251]

The value of at zero temperature can be estimated from the electron density ( equation Al.3.26). Typical values of the Femii energy range from about 1.6 eV for Cs to 14.1 eV for Be. In temis of temperature (Jp = p//r), the range is approxunately 2000-16,000 K. As a consequence, the Femii energy is a very weak ftuiction of temperature under ambient conditions. The electronic contribution to the heat capacity, C, can be detemiined from... [Pg.128]

Siace the pores ia an aerogel are comparable to, or smaller than, the mean free path of molecules at ambient conditions (about 70 nm), gaseous conduction of heat within them is iaefficient. Coupled with the fact that sohd conduction is suppressed due to the low density, a siUca aerogel has a typical thermal conductivity of 0.015 W/(m-K) without evacuation. This value is at least an order of magnitude lower than that of ordinary glass and considerably lower than that of CFC (chloro uorocarbon)-blown polyurethane foams (54). [Pg.6]

Several striking examples demonstrating the atomically precise control exercised by the STM have been reported. A "quantum corral" of Fe atoms has been fabricated by placing 48 atoms in a circle on a flat Cu(lll) surface at 4K (Fig. 4) (94). Both STM (under ultrahigh vacuum) and atomic force microscopy (AFM, under ambient conditions) have been employed to fabricate nanoscale magnetic mounds of Fe, Co, Ni, and CoCr on metal and insulator substrates (95). The AFM has also been used to deposit organic material, such as octadecanethiol onto the surface of mica (96). New appHcations of this type of nanofabrication ate being reported at an ever-faster rate (97—99). [Pg.204]

Health and Safety Factors. Because of their high vapor pressures (methyl vinyl ether is a gas at ambient conditions), the lower vinyl ethers represent a severe fire hazard and must be handled accordingly. Contact with acids can initiate violent polymerization and must be avoided. Although vinyl ethers form peroxides more slowly than saturated ethers, distillation residues must be handled with caution. [Pg.116]

Particle Regimes. In 1973, particles were classified with respect to how they fluidize in air at ambient conditions into Geldart groups (6) (Fig. 4). Particles that formed bubbles immediately after the gas superficial velocity exceeded were designated as Group B particles. For these particles, the... [Pg.72]

Fig. 4. Geldart group particle classification diagram for air at ambient conditions (6). Group A consists of fine particles B, coarse particles C, cohesive,... Fig. 4. Geldart group particle classification diagram for air at ambient conditions (6). Group A consists of fine particles B, coarse particles C, cohesive,...
Carbon and Graphite. Fluorine reacts with amorphous forms of carbon, such as wood charcoal, to form carbon tetrafluoride [75-73-0], CF, and small amounts of other perfluorocarbons. The reaction initiates at ambient conditions, but proceeds to elevated temperatures as the charcoal bums ia fluoriae. [Pg.124]

Hexafluorophosphoric Acid. Hexafluorophosphoric acid (3) is present under ambient conditions only as an aqueous solution because the anhydrous acid dissociates rapidly to HF and PF at 25°C (56). The commercially available HPF is approximately 60% HPF based on PF analysis with HF, HPO2F2, HPO F, and H PO ia equiUbrium equivalent to about 11% additional HPF. The acid is a colorless Hquid which fumes considerably owiag to formation of an HF aerosol. Frequently, the commercially available acid has a dark honey color which is thought to be reduced phosphate species. This color can be removed by oxidation with a small amount of nitric acid. When the hexafluorophosphoric acid is diluted, it slowly hydrolyzes to the other fluorophosphoric acids and finally phosphoric acid. In concentrated solutions, the hexafluorophosphoric acid estabUshes equiUbrium with its hydrolysis products ia relatively low concentration. Hexafluorophosphoric acid hexahydrate [40209-76-5] 6 P 31.5°C, also forms (66). This... [Pg.226]

Unfilled Teflon PFA has been tested in mechanical appHcations using Teflon FEP-100 as a control (24). Tests were mn on molded thmst bearings at 689.5 kPa (100 psi) against AISI 1080, Rc 20,16AA steel, and at ambient conditions in air without lubrication. A limiting PV value of 5000 was found. Wear factors and dynamic coefficients of friction are shown in Table 4. [Pg.375]

Vlayl fluoride [75-02-5] (VF) (fluoroethene) is a colorless gas at ambient conditions. It was first prepared by reaction of l,l-difluoro-2-bromoethane [359-07-9] with ziac (1). Most approaches to vinyl fluoride synthesis have employed reactions of acetylene [74-86-2] with hydrogen fluoride (HF) either directly (2—5) or utilizing catalysts (3,6—10). Other routes have iavolved ethylene [74-85-1] and HF (11), pyrolysis of 1,1-difluoroethane [624-72-6] (12,13) and fluorochloroethanes (14—18), reaction of 1,1-difluoroethane with acetylene (19,20), and halogen exchange of vinyl chloride [75-01-4] with HF (21—23). Physical properties of vinyl fluoride are given ia Table 1. [Pg.379]

The thermal conductivity of a cellular polymer can change upon aging under ambient conditions if the gas composition is influenced by such aging. Such a case is evidenced when oxygen or nitrogen diffuses into polyurethane foams that initially have only a fluorocarbon blowing agent in the cells (32,130,143,190,191,198-201). [Pg.414]

Fuel economy, typically expressed as distance driven per volume of fuel consumed, ie, ia km/L (mi/gal), is measured over two driving cycles specified by the Federal Test Procedure (63). Oae cycle simulates city driving and consists of relatively low speed (- 32 km/h) driving, and iacludes a portion where the car starts after having equiUbrated at ambient conditions for 16 hours. The second simulates highway driving conditions and iacludes higher speeds and... [Pg.188]

In the paraffin series, methane, CH, to / -butane, C H q, are gases at ambient conditions. Propane, C Hg, and butanes are sometimes considered in a special category because they can be fiquefied at reasonable pressures. These compounds are commonly referred to as fiquefied petroleum gases (qv) (LPG). The pentanes, to pentadecane [629-62-9], fiquids, commonly called distillates, which include gasoline [8006-61-9], kerosene... [Pg.364]

Gaseous Hydrogen Chloride. Cast Hon (qv), mild steel, and steel alloys are resistant to attack by dry, pure HCl at ambient conditions and can be used at temperatures up to the dissociation temperature of HCl. The corrosion rate at 300°C is reported to be 0.25 cm/yr and no ignition point has been found for mild steel at 760°C, at which temperature HCl is dissociated to the extent of 0.2%. [Pg.446]

Specialized equipment for industrial measurements and automatic control have been developed (18) (see Process control). In general, the pH of an industrial process need not be controlled with great accuracy. Consequendy, frequent standardization of the cell assembly may be uimecessary. On the other hand, the ambient conditions, eg, temperature and humidity, under which the industrial control measurements are made, may be such that the pH meter must be much more robust than those intended for laboratory use. To avoid costiy downtime for repairs, pH instmments may be constmcted of modular units, permitting rapid removal and replacement of a defective subssembly. [Pg.468]

Microorganisms are ubiquitous, thus microbial contamination is the rule the total absence of microbes, ie, sterility, is the exception. Many microorganisms might be considered mainstream, growing under typical ambient conditions, but there are almost always strains that are capable of surviving and multiplying under the extremes of pH, salinity, pressure, and temperature. [Pg.91]

Reactions in Aqueous Media. The chemistry of aqueous iodine has been extensively studied because of the role of iodine as a disinfectant (see Disinfectants AND antiseptics). The system is very complex, owing to the number of oxidation states available to iodine under ambient conditions (48). [Pg.361]

Silica and Alumina. The manufacture of Pordand cement is predicated on the reaction of lime with siUca and alumina to form tricalcium sihcate [12168-85-3] and aluminate. However, under certain ambient conditions of compaction with sustained optimum moisture content, lime reacts very slowly to form complex mono- and dicalcium siUcates, ie, cementitious compounds (9,10). If such a moist, compact mixture of lime and siUca is subjected to steam and pressure in an autoclave, the lime—silica reaction is greatiy accelerated, and when sand and aggregate is added, materials of concrete-like hardness are produced. Limestone does not react with siUca and alumina under any circumstances, unless it is first calcined to lime, as in the case of hydrauhc lime or cement manufacture. [Pg.168]

Hydrated lime is also used to stabilize the calcium sulfite—sulfate sludge derived from thickeners at SO2 scmbbing plants that use limestone—lime. Hydrated lime (2—3%) is added to react with the gypsum sludge and flyash or other added siHceous material. Under ambient conditions the lime and siHca serve as a binder by reacting as calcium siHcates so that the material hardens into a safe, nonleaching, stable, sanitary landfill or embankment fill. [Pg.178]

Figure 13 shows a typical iastallation of a differential pressure instmment for closed tanks. Connections from the instmments are made to taps ia the vessel at minimum and maximum levels. Between the instmment and the maximum level tap is a constant reference leg. This leg is filled with Hquid until its head is equivalent to the head of the Hquid ia the vessel at maximum level. The reference leg must remain constant, with no formation of vapor under varying ambient conditions. On some appHcations it may be necessary to fiH the reference leg with a Hquid, such as water or a light oil, that remains stable. If the Hquid used ia the reference leg has a higher specific gravity than the Hquid ia the tank, the resulting difference ia head must be corrected for ia the iastmment. Most differential pressure measuriag instmments are equipped mechanically to suppress this difference. [Pg.212]

The success of the cycloaddition reaction of maleic anhydride varies gready depending on which heterocyclic diene is used. The cycloaddition of maleic anhydride to furan [110-00-9] occurs ia a few seconds under ambient conditions (42,43). Although the endo adduct (14) is favored kiaeticaHy, the exo adduct (13) is isolated. [Pg.450]

The discovery of chemical N2 fixation under ambient conditions is more compatible with a simple, complementary, low temperature and low pressure system, possibly operated electrochemically and driven by a renewable energy resource (qv), such as solar, wind, or water power, or other off-peak electrical power, located near or in irrigation streams. Such systems might produce and apply ammonia continuously, eg, directly in the rice paddy, or store it as an increasingly concentrated ammoniacal solution for later appHcation. In fact, the Birkeland-Eyde process of N2 oxidation in an electric arc has been... [Pg.92]

Binders and Resins. The choice of binder is the most important ingredient choice in the formulation process because the binder affects the performance properties of a paint more than any other single ingredient (3). The physical properties of binders required for paints include the abiHty to dry or cure under various ambient conditions, good adhesion to various substrates, abrasion resistance, washabiHty, flexibiHty, water resistance, and ultraviolet light resistance. The balance of these required properties is mosdy dependent on whether the paint is being developed for interior or exterior appHcations. [Pg.540]

Alkali metal peroxides are stable under ambient conditions in the absence of water. They dissolve vigorously in water, forming hydrogen peroxide and the metal hydroxide. They are strong oxidizing agents and can react violendy with organic substances. Only lithium peroxide and sodium peroxide have been commercialized. [Pg.90]

Sodium peroxoborate tetrahydrate is the most stable of the three peroxoborate hydrates under ambient conditions. It has, however, never been commercialised because it is slow when dissolving in water. [Pg.93]

Peroxohydrates are usually made by simple crystallization from solutions of salts or other compounds in aqueous hydrogen peroxide. They are fairly stable under ambient conditions, but traces of transition metals catalyze the Hberation of oxygen from the hydrogen peroxide. Early work on peroxohydrates has been reviewed (92). [Pg.96]

Sodium superoxide [12034-12-7] Na02, is a yellow soHd, thermochemicaHy unstable at ambient conditions with respect to the foUowiag reaction ... [Pg.98]

Liquefied Petroleum Gas (LPG). Certain specific hydrocarbons, such as propane, butane, pentane, and their mixtures, exist in the gaseous state under atmospheric ambient conditions but can be converted to the Hquid state under conditions of moderate pressure at ambient temperature. This is termed Hquefied petroleum gas (LPG). Liquefied petroleum gas (qv) is a refinery product and the individual constituents, or light ends (Table 4), are produced during a variety of refining operations. [Pg.209]


See other pages where Ambient conditions is mentioned: [Pg.1696]    [Pg.3030]    [Pg.166]    [Pg.4]    [Pg.373]    [Pg.443]    [Pg.132]    [Pg.363]    [Pg.469]    [Pg.130]    [Pg.145]    [Pg.217]    [Pg.220]    [Pg.421]    [Pg.180]    [Pg.182]    [Pg.504]    [Pg.364]    [Pg.74]    [Pg.252]    [Pg.479]    [Pg.200]   


SEARCH



Ambient

Ambient 5 Cluster Catalysts Under Applied Conditions

Ambient condition synthesis

Ambient conditions, effect

Ambient conditions, temperature/pressure

Ambient conditions, temperature/pressure increase)

Ambient storage conditions

Carboxylates ambient condition synthesis

Effect of Ambient Conditions

Electrospinning ambient conditions

Influence of Ambient Conditions

Model Catalysts Under Ambient and Applied Conditions

Stress-strain at ambient conditions

Worst case condition ambient conditions

© 2024 chempedia.info