Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin copolymers styrene-acrylonitrile copolymer

Olefin copolymer Styrene acrylonitrile copolymer Amylonitrile butadiene styrene terpolymer Thermoplastic olefin elastomer Ethyl methacryl acid copolymer ... [Pg.7]

MC MDI MEKP MF MMA MPEG MPF NBR NDI NR OPET OPP OSA PA PAEK PAI PAN PB PBAN PBI PBN PBS PBT PC PCD PCT PCTFE PE PEC PEG PEI PEK PEN PES PET PF PFA PI PIBI PMDI PMMA PMP PO PP PPA PPC PPO PPS PPSU Methyl cellulose Methylene diphenylene diisocyanate Methyl ethyl ketone peroxide Melamine formaldehyde Methyl methacrylate Polyethylene glycol monomethyl ether Melamine-phenol-formaldehyde Nitrile butyl rubber Naphthalene diisocyanate Natural rubber Oriented polyethylene terephthalate Oriented polypropylene Olefin-modified styrene-acrylonitrile Polyamide Poly(aryl ether-ketone) Poly(amide-imide) Polyacrylonitrile Polybutylene Poly(butadiene-acrylonitrile) Polybenzimidazole Polybutylene naphthalate Poly(butadiene-styrene) Poly(butylene terephthalate) Polycarbonate Polycarbodiimide Poly(cyclohexylene-dimethylene terephthalate) Polychlorotrifluoroethylene Polyethylene Chlorinated polyethylene Poly(ethylene glycol) Poly(ether-imide) Poly(ether-ketone) Polyethylene naphthalate Polyether sulfone Polyethylene terephthalate Phenol-formaldehyde copolymer Perfluoroalkoxy resin Polyimide Poly(isobutylene), Butyl rubber Polymeric methylene diphenylene diisocyanate Poly(methyl methacrylate) Poly(methylpentene) Polyolefins Polypropylene Polyphthalamide Chlorinated polypropylene Poly(phenylene oxide) Poly(phenylene sulfide) Poly(phenylene sulfone)... [Pg.959]

The rate of polymerization of polar monomers, for example, maleic anhydride, acrylonitrile, or methyl methacrylate, can be enhanced by coraplexing them with a metal halide (zinc or vanadium chloride) or an organoaluminum halide (ethyl aluminum sesqui-chloride). These complexed monomers participate in a one-electron transfer reaction with either an uncomplexed monomer or another electron-donor monomer, for example, olefin, diene, or styrene, and thus form alternating copolymers (11) with free-radical initiators. An alternating styrene/acrylonitrile copolymer (12) has been prepared by free-radical initiation of equimolar mixtures of the monomers in the presence of nitrile-coraplexing agents such as aluminum alkyls. [Pg.222]

PP poly(propylene), PS poly(styrene), MAH maleic anhydride, MA methacrylic acid, S styrene, PE poly(ethylene), PPE poly(phenylene ether), LDPE low-density PE, EPDM ethylene-propylene-diene terpolymer, SAN styrene-acrylonitrile copolymer, EPR ethylene-propylene copolymer, NMAC A -methacrylyl caprolactam, GMA glycidyl methacrylate, FA fumaric acid, AEFO anhydride and epoxide functionalized olefin copolymer, SEBS styrene/ethylene-butylene/styrene copolymer, HDPE high-density PE, AN acrylonitrile, and S-MAH-MMA styrene-maleic anhydride-methyl methacrylate copolymer. [Pg.460]

Rovel Styrene-acrylonitrile copolymer, SAN, blended with saturated olefinic elastomer, EPR Dow Chem. Co. [Pg.2333]

Isopropanol vapor was used to dissolve the matrix in polymer blends [245]. Williams and Hudson [246] etched microtomed blocks of high impact polystyrene so that the rubber particles protruded from the matrix. Later, Kesskula and Traylor [130] removed rubber particles from Hire and ABS polymers by dissolving the matrix in a cyclohexane solution of osmium tetroxide and extracting the dispersed phase for SEM. Olefin particles were removed from impact modified nylon and polyester [6]. Selective etching of the polycarbonate phase with triethyl-amine in a mixture with styrene-acrylonitrile copolymer (SAN) revealed the nature of the blend [247]. [Pg.126]

The principal use of the peroxodisulfate salts is as initiators (qv) for olefin polymerisation in aqueous systems, particularly for the manufacture of polyacrylonitrile and its copolymers (see Acrylonitrile polymers). These salts are used in the emulsion polymerisation of vinyl chloride, styrene—butadiene, vinyl acetate, neoprene, and acryhc esters (see Acrylic ester polymers Styrene Vinyl polymers). [Pg.96]

The isoprene units in the copolymer impart the ability to crosslink the product. Polystyrene is far too rigid to be used as an elastomer but styrene copolymers with 1,3-butadiene (SBR rubber) are quite flexible and rubbery. Polyethylene is a crystalline plastic while ethylene-propylene copolymers and terpolymers of ethylene, propylene and diene (e.g., dicyclopentadiene, hexa-1,4-diene, 2-ethylidenenorborn-5-ene) are elastomers (EPR and EPDM rubbers). Nitrile or NBR rubber is a copolymer of acrylonitrile and 1,3-butadiene. Vinylidene fluoride-chlorotrifluoroethylene and olefin-acrylic ester copolymers and 1,3-butadiene-styrene-vinyl pyridine terpolymer are examples of specialty elastomers. [Pg.20]

Fawcett, A. H. Foster, A. B. Hania, M. Hohn, M. Mazebedi, J. L. McGaffery, G. O. Mullen, E. Toner, D. Silicone Graft Copolymers with Acrylonitrile, Ghloroprene, Styrene, Methylmethacrylate, and an Olefin. In Synthesis and Properties of Silicones and Silicone-Modified Materials-, Clarson, S. J., Fitzgerald, J. J., Owen, M. J., Smith, S. D., Van Dyke, M. E., Eds. ACS Symposium Series 838 American Chemical Society Washington, DC, 2003 pp 318-328. [Pg.689]

The concept of PO macroinitiators centers on the introduction of an initiation moiety into an olefinic polymer chain for polymerization. The most effective route for preparing PO macroinitiators is by employing functional polyolefins containing hydroxyl groups or other reactive groups. These functional POs are prepared by copolymerization of olefins with functional monomers and post-polymerization reaction, as mentioned above. In the case where an initiation moiety was at the chain-end of the polyolefins, a block type copolymer is produced. It has been reported that thiol-terminated PP was used as polymeric chain transfer agent in styrene and styrene/acrylonitrile polymerization to form polypropylene-b/odc-polystyrene (PP-b-PS) and polypropylene-btock-poly(styrene-co-acrylonitrile) (PP-b-SAN) block copolymer [19]. On the other hand, polymer hybrids with block and graft structures can be produced if initiation moieties are in the polymer chain. [Pg.84]

Acrylonitrile Butadiene Styrene Acrylonitrile Styrene Acrylate Cyclic Olefin Copolymer Polyethylene Chlorotrifluoroethylene Polyethylene Tetrafluoroethylene Ethylene Vinyl Acetate Fluorinated Ethylene Propylene High Density Polyethylene High Performance Polyamide Liquid Crystalline Polymer Low Density Polyethylene Linear Low Density Polyethylene Medium Density Polyethylene Polyamide (Nylon)... [Pg.733]

Quirk [531] reports on the copolymerization of myrcene and styrene. Block copolymers with molecular weight of more than 100 000 are obtained. Many combinations of substituted 1,3-butadienes and cyclodienes with other dienes, olefins, and styrene have been described [532-542]. Cyclopentadiene or 1,3-cyclohexadiene can be copolymerized with a-methylstyrene [543-545], isobutene [546,547], 1,3-butadiene [548,549], acrylonitrile [550,551], SCI2 [552], SO2 [553], and compounds of maleic acid [554-557]. [Pg.375]

For example, this method was carried out for various copolymers, namely styrene-methyl methacrylate copolymer [65-67], epoxide resins [68], styrene-acrylic acid copolymer [69], styrene-2-methoxyethyl methacrylate copolymer [70, 71], ethylene-ot-olefin copolymer [72], partially modified dextran-ethyl carbonate copolymer [73], vinyl chloride-vinyl acetate copolymer [43], styrene-acrylonitrile copolymer [74], and styrene-butadiene copolymer [75]. [Pg.229]

Important properties of ethylene yclic olefin copolymers such as low melting point, high transparency, better optical characteristics, good heat stability, and high chemical resistance, have opened up its applications into areas like optoelectronic data transmission and data storage on a new generation of optical disks. These copolymers can effectively compete with existing acrylonitrile-butadiene-styrene polymers, polycarbonate and acrylics products. This will push polyolefins into the areas of speciality applications. [Pg.18]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

MMBS are core-shell copolymers that are prepared in two stages. The core is a copolymer of 50-90% of 1,3-butadiene and the rest is preferably styrene or additional monomers such as acrylonitrile, methacrylates, and olefins (4). [Pg.316]

Catalysts of the Ziegler-Natta type are applied widely to the anionic polymerization of olefins and dienes. Polar monomers deactivate the system and cannot be copolymerized with olefins. J. L. Jezl and coworkers discovered that the living chains from an anionic polymerization can be converted to free radicals by the reaction with organic peroxides and thus permit the formation of block copolymers with polar vinyl monomers. In this novel technique of combined anionic-free radical polymerization, they are able to produce block copolymers of most olefins, such as alkylene, propylene, styrene, or butadiene with polar vinyl monomers, such as acrylonitrile or vinyl pyridine. [Pg.10]

In later communications (27, 28) Hirooka reported that in addition to acrylonitrile, other conjugated monomers such as methyl acrylate and methyl methacrylate formed active complexes with organoaluminum halides, and the latter yielded high molecular weight 1 1 alternating copolymers with styrene and ethylene. However, an unconjugated monomer such as vinyl acetate failed to copolymerize with olefins by this technique. [Pg.134]

Monomers with electron-rich double bonds produce one-to-one copolymers with monomers having electron-poor double bonds in reaction systems that also contain certain Lewis acids. These latter are halides or alkyl halides of nontransition metal elements, including AlCb, ZnCh, SnCL, BF3, AI(CH2CH3)Cl2, alkyl boron halides, and other compounds. The acceptor monomer generally has a cyano or carbonyl group conjugated to a vinyl double bond. Examples are acrylic and methacrylic acids and their esters, acrylonitrile, vinyl ketones, maleic anydride, fumaric esters, vinylidene cyanide, sulfur dioxide, and carbon monoxide. The variety of donor molecules is large and includes various olefins, styrene, isoprene, vinyl halides and esters, vinylidene halides, and allyl monomers [30]. [Pg.270]


See other pages where Olefin copolymers styrene-acrylonitrile copolymer is mentioned: [Pg.2163]    [Pg.197]    [Pg.197]    [Pg.9]    [Pg.15]    [Pg.197]    [Pg.84]    [Pg.1271]    [Pg.626]    [Pg.288]    [Pg.296]    [Pg.65]    [Pg.880]    [Pg.30]    [Pg.528]    [Pg.11]    [Pg.88]    [Pg.270]    [Pg.401]    [Pg.10]    [Pg.11]    [Pg.673]    [Pg.528]    [Pg.525]    [Pg.40]    [Pg.116]   


SEARCH



Acrylonitrile copolymers

OLEFIN COPOLYMER

Olefinic copolymers

STYRENE-ACRYLONITRILE

Styrene-acrylonitrile copolymers

Styrene-copolymers

Styrene/olefin copolymers

© 2024 chempedia.info