Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double bonds, electron-poor

These alkenes are less reactive than alkynes toward electrophihc addition because the electronegative group makes the double bond electron poor. ... [Pg.138]

The exact mechanism of the addition of aliphatic aldehydes and ketones to olefins depends on the electron density of the double bond. Electron-rich olefins react via a short-lived biradical or a concerted mechanism, whereas electron-poor olefins form a preliminary charge-transfer complex.74... [Pg.714]

FIGURE 6 4 Electro static potential maps of HCI and ethylene When the two react the interaction is between the electron rich site (red) of ethylene and electron poor region (blue) of HCI The electron rich region of ethylene is associ ated with the tt electrons of the double bond and H IS the electron poor atom of HCI... [Pg.236]

A more efficient agent than peroxy compounds for the epoxidation of fluoro-olefins with nonfluonnated double bond is the hypofluorous acid-acetomtrile complex [22] Perfluoroalkylethenes react with this agent at room temperature within 2-3 h with moderate yields (equation 13), whereas olefins with strongly electron-deficient double bond or electron-poor, sterically hindered olefins, for example l,2-bis(perfluorobutyl)ethene and perfluoro-(l-alkylethyl)ethenes, are practically inert [22] Epoxidation of a mixture of 3 perfluoroalkyl-1-propenes at 0 C IS finished after 10 mm in 80% yield [22] The trifluorovinyl group in partially fluorinated dienes is not affected by this agent [22] (equation 13)... [Pg.326]

Hexafluoropropylene oxide (HFPO), which decomposes reversibly to di-fluorocarbene and trifluoroacetyl fluonde with a half-life of about 6 h at 165 °C [30], is a versatile reagent. Its pyrolysis with olefins is normally carried out at 180-2(X) °C, and yields are usually good with either electron-nch or electron-poor olefins [31, 32, 33, 34, 35, 36, 37] (Table 2). The high reaction temperatures allow the eyclopropanation of very electron poor double bonds [58] (equation 10) but can result in rearranged products [39, 40, 41] (equations 11-13)... [Pg.770]

Addition reactions — The fullerenes Ceo and C70 react as electron-poor olefins with fairly localized double bonds. Addition occurs preferentially at a double bond common to two annelated 6-membered rings (a 6 6 bond) and a second addition, when it occurs is generally in the opposite hemisphere. The first characteriz-able mono adduct was [C6oOs04(NC5H4Bu )2]. formed by reacting Cgo with an excess of OSO4 in 4-butylpyridine. The structure is shown in... [Pg.286]

The Diels-Alder reaction,is a cycloaddition reaction of a conjugated diene with a double or triple bond (the dienophile) it is one of the most important reactions in organic chemistry. For instance an electron-rich diene 1 reacts with an electron-poor dienophile 2 (e.g. an alkene bearing an electron-withdrawing substituent Z) to yield the unsaturated six-membered ring product 3. An illustrative example is the reaction of butadiene 1 with maleic anhydride 4 ... [Pg.89]

A primary allylic hydrogen at the ene 1 is especially reactive a secondary hydrogen migrates less facile, and a tertiary one is even less reactive. The enophile unit should be of an electron-poor nature it can consist of a carbon-carbon double or triple bond, a carbonyl group or an azo group. Mixtures of regioisomeric products may be obtained with substituted enophiles. The acrylic ester 6 reacts with... [Pg.104]

The regioselectivity observed in these reactions can be correlated with the resonance structure shown in Fig. 2. The reaction with electron-rich or electron-poor alkynes leads to intermediates which are the expected on the basis of polarity matching. In Fig. 2 is represented the reaction with an ynone leading to a metalacycle intermediate (formal [4C+2S] cycloadduct) which produces the final products after a reductive elimination and subsequent isomerisation. Also, these reactions can proceed under photochemical conditions. Thus, Campos, Rodriguez et al. reported the cycloaddition reactions of iminocarbene complexes and alkynes [57,58], alkenes [57] and heteroatom-containing double bonds to give 2Ff-pyrrole, 1-pyrroline and triazoline derivatives, respectively [59]. [Pg.74]

Coupling of alkenylcarbene complexes and siloxy-substituted 1,3-dienes affords vinylcyclopentene derivatives through a formal [3C+2S] cycloaddition process. This unusual reaction is explained by an initial [4C+2S] cycloaddition of the electron-poor chromadiene system as the 471 component and the terminal double bond of the siloxydiene as the dienophile. The chromacyclohexene intermediate evolves by a reductive elimination of the metal fragment to generate the [3C+2S] cyclopentene derivatives [73] (Scheme 26). [Pg.79]

The simplest dienophile, ethene, is poorly reactive. Electron-withdrawing and electron-donating groups, on the carbon atom double bond, activate the double bond in normal and inverse electron-demand Diels-Alder reactions, respectively. [Pg.4]

The rate of epoxidation of alkenes is increased by alkyl groups and other ERG substituents and the reactivity of the peroxy acids is increased by EWG substituents.72 These structure-reactivity relationships demonstrate that the peroxyacid acts as an electrophile in the reaction. Decreased reactivity is exhibited by double bonds that are conjugated with strongly electron-attracting substituents, and more reactive peroxyacids, such as trifluoroperoxyacetic acid, are required for oxidation of such compounds.73 Electron-poor alkenes can also be epoxidized by alkaline solutions of... [Pg.1091]

Exclusive O/H insertion takes place in the Rh2(OAc)4-catalyzed reaction of diethyl diazomalonate with a,(J-unsaturated y-hydroxyesters 167 a-c163). This is not surprising in view of the reluctance of electrophilic metal carbenes to add to electron-poor double bonds (see Sect. 2.3.2). However, the more electron-rich double bond of p-methoxybenzyl clavulanate 168 also cannot compete with the O—H function for the same carbenoid 164). The steric situation at the trisubstituted double bonds of 167 and 168 may be reason enough to render an attack there highly unfavorable as compared to the easily accessible O—H function, no matter how nucleophilic the double bond is. [Pg.144]

Some remarks concerning the scope of the cobalt chelate catalysts 207 seem appropriate. Terminal double bonds in conjugation with vinyl, aryl and alkoxy-carbonyl groups are cyclopropanated selectively. No such reaction occurs with alkyl-substituted and cyclic olefins, cyclic and sterically hindered acyclic 1,3-dienes, vinyl ethers, allenes and phenylacetylene95). The cyclopropanation of electron-poor alkenes such as acrylonitrile and ethyl acrylate (optical yield in the presence of 207a r 33%) with ethyl diazoacetate deserve notice, as these components usually... [Pg.165]

In the reaction of 1 with alkynes possessing electron-withdrawing substituents, the corresponding silacyclopropene derivatives 66 and 67 are formed, as described in Scheme 23.29 An unexpected pathway was observed in the reaction with the electron-poor hexafluorobutyne(2) the X-ray characterized heterocycle 68 was most likely obtained by nucleophilic attack of 1 at the triple bond. A subsequent shift of a fluorine atom from carbon to silicon creates an allene-type molecule which was stabilized by a [2 + 2] cycloaddition process involving a double bond from the pentamethylcyclopentadienyl unit, as described in Scheme 24.33... [Pg.24]

J(P1)427>. The regioselectivity of the second radical cyclization depends on the electronic nature of the homoallylic double bond pyrrolizinones 240 which result from a final 5-o -cyclization mode are preferred in the case of electron-poor carbon-carbon double bonds, such as enones or enoates electron-rich double bonds lead to indolizinones via a final 6-f db-cyclization. The best yields of pyrrolizinones were observed with iodide precursors. The cir-isomers of 240 predominate in this 5-f rf6i-5-f3co-cyclization. [Pg.31]


See other pages where Double bonds, electron-poor is mentioned: [Pg.532]    [Pg.1063]    [Pg.1063]    [Pg.1063]    [Pg.1063]    [Pg.1013]    [Pg.522]    [Pg.532]    [Pg.23]    [Pg.311]    [Pg.34]    [Pg.40]    [Pg.43]    [Pg.45]    [Pg.870]    [Pg.947]    [Pg.126]    [Pg.244]    [Pg.329]    [Pg.130]    [Pg.161]    [Pg.204]    [Pg.56]    [Pg.294]    [Pg.103]    [Pg.23]    [Pg.83]    [Pg.80]    [Pg.904]    [Pg.61]    [Pg.64]    [Pg.428]    [Pg.59]   
See also in sourсe #XX -- [ Pg.829 , Pg.830 , Pg.831 , Pg.832 , Pg.833 , Pg.834 , Pg.835 , Pg.836 ]




SEARCH



Electron-poor

Poore

© 2024 chempedia.info