Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peroxides dialkyl

The relative importance of the various pathways depends on the alkyl groups (R). The rate constants for scission of groups (R ) from /-aikoxy radicals (RR C-O) increase in the order isopropyl ethyl /-butylperoxy methyl.2IIJ Thus, the pathway affording peroxyester and an alkyl radical is less important when R is methyl than when R is a higher alkyl group, if the pathway to alkylperoxy radicals is dominant, the resultant polymer is likely to have a proportion of peroxy end groups.200 211 [Pg.91]

Solvent dependence of k, for di-r-alkyl peroxides is small when compared to most other peroxide initiators.128 212 For di-/-butyl peroxide,128 d is slightly greater (up to two-fold at 125 °C) in protic (/-butanol, acetic acid) or dipolar aprotic solvents than in other media (cyclohexane, triethylamine, tetrahydrofuran). [Pg.91]

The chemistry of the di-/-butyl and ciiinyl peroxides is relatively uncomplicated by induced or ionic decomposition mechanisms. However, induced decomposition of di-/-butyl peroxide has been observed in primary or secondary [Pg.91]


Diall l Peroxides. Some commercially available diaLkyl peroxides and their corresponding 10-h half-life temperatures in dodecane are Hsted in Table 6 (44). DiaLkyl peroxides initially cleave at the oxygen—oxygen bond to generate alkoxy radical pairs ... [Pg.226]

Because high temperatures are required to decompose diaLkyl peroxides at useful rates, P-scission of the resulting alkoxy radicals is more rapid and more extensive than for most other peroxide types. When methyl radicals are produced from alkoxy radicals, the diaLkyl peroxide precursors are very good initiators for cross-linking, grafting, and degradation reactions. When higher alkyl radicals such as ethyl radicals are produced, the diaLkyl peroxides are useful in vinyl monomer polymerizations. [Pg.226]

Most likely singlet oxygen is also responsible for the red chemiluminescence observed in the reaction of pyrogaHol with formaldehyde and hydrogen peroxide in aqueous alkaU (152). It is also involved in chemiluminescence from the decomposition of secondary dialkyl peroxides and hydroperoxides (153), although triplet carbonyl products appear to be the emitting species (132). [Pg.270]

Organic peroxides can be classified according to peroxide stmcture. There are seven principal classes hydroperoxides dialkyl peroxides a-oxygen substitued alkyl hydroperoxides and dialkyl peroxides primary and secondary ozonides peroxyacids diacyl peroxides (acyl and organosulfonyl peroxides) and alkyl peroxyesters (peroxycarboxylates, peroxysulfonates, and peroxyphosphates). [Pg.101]

In the preparation of hydroperoxides from hydrogen peroxide, dialkyl peroxides usually form as by-products from the alkylation of the hydroperoxide in the reaction mixture. The reactivity of the substrate (olefin or RX) with hydrogen peroxide is the principal restriction in the process. If elevated temperatures or strongly acidic or strongly basic conditions are required, extensive decomposition of the hydrogen peroxide and the hydroperoxide can occur. [Pg.104]

Dialkyl peroxides have the stmctural formula R—OO—R/ where R and R are the same or different primary, secondary, or tertiary alkyl, cycloalkyl, and aralkyl hydrocarbon or hetero-substituted hydrocarbon radicals. Organomineral peroxides have the formulas R Q(OOR) and R QOOQR, where at least one of the peroxygens is bonded directly to the organo-substituted metal or metalloid, Q. Dialkyl peroxides include cyclic and bicycflc peroxides where the R and R groups are linked, eg, endoperoxides and derivatives of 1,2-dioxane. Also included are polymeric peroxides, which usually are called poly(alkylene peroxides) or alkylene—oxygen copolymers, and poly(organomineral peroxides) (44), where Q = As or Sb. [Pg.105]

Symmetrical diaLkyl peroxides are commonly named as such, eg, dimethyl peroxide. For unsymmetrical diaLkyl peroxides, the two radicals usually are hsted ia alphabetical order, eg, ethyl methyl peroxide. For organomineral peroxides or complex stmctures, ie, where R and R are difficult to name as radicals, the peroxide is named as an aLkyldioxy derivative, although alkylperoxy is stUl used by many authors. CycHc peroxides are normally named as heterocychc compounds, eg, 1,2-dioxane, or by substitutive oxa nomenclature, eg, 1,2-dioxacyclohexane however, when the two oxygens form a bridge between two carbon atoms of a ring, the terms epidioxy or epiperoxy are frequendy used. The resulting polycycHc stmcture has been called an endoperoxide, epiperoxide, or transaimular peroxide. [Pg.106]

Physical Properties. The stmctures and the boiling and melting points of several diaLkyl peroxides are Hsted in Table 2 a comprehensive Hst is given in the Hterature (66). The melting point of 4,4 -dioxybis[2,4,6-tris(/ i -butyl)-2,5-cyclohexadien-l-one] [1975-14-0] is 148—149°C. [Pg.106]

Infrared, uv, nmr spectra (66), and photoelectron spectra have been reviewed (67). Physical properties of siHcon peroxides are summarized in Reference 43. Other physical properties, eg, dipole moments, dihedral angles, and heats of combustion ate Hsted in Reference 68. The oxygen—oxygen bond strengths of various diaLkyl peroxides have been reported (69). [Pg.106]

Primary and secondary dialkyl peroxides undergo thermal decompositions more rapidly than expected owing to radical-induced decompositions (73). Such radical-induced peroxide decompositions result in inefficient generation of free radicals. [Pg.107]

Decomposition products from primary and secondary dialkyl peroxides include aldehydes, ketones, alcohols, hydrogen, hydrocarbons, carbon monoxide, and carbon dioxide (44). [Pg.107]

Because di-/ fZ-alkyl peroxides are less susceptible to radical-induced decompositions, they are safer and more efficient radical generators than primary or secondary dialkyl peroxides. They are the preferred dialkyl peroxides for generating free radicals for commercial appHcations. Without reactive substrates present, di-/ fZ-alkyl peroxides decompose to generate alcohols, ketones, hydrocarbons, and minor amounts of ethers, epoxides, and carbon monoxide. Photolysis of di-/ fZ-butyl peroxide generates / fZ-butoxy radicals at low temperatures (75), whereas thermolysis at high temperatures generates methyl radicals by P-scission (44). [Pg.107]

Thermal or photo-induced decompositions of dialkyl peroxides in the presence of suitable substrates yield various products. For example, with nitric oxides, alkyl nitrites or nitrates are formed and, with carbon monoxide, Z fZ-alkyl esters are obtained (44) ... [Pg.107]

Dialkyl peroxides can be reduced to the corresponding alcohols and/or ethers using a variety of reducing agents, some of which, eg, hydriodic acid, have been used for analysis. [Pg.107]

The susceptibihty of dialkyl peroxides to acids and bases depends on peroxide stmcture and the type and strength of the acid or base. In dilute aqueous sulfuric acid (<50%) di-Z fZ-butyl peroxide is resistant to reaction whereas in concentrated sulfuric acid this peroxide gradually forms polyisobutylene. In 50 wt % methanolic sulfuric acid, Z fZ-butyl methyl ether is produced in high yield (66). In acidic environments, unsymmetrical acychc alkyl aralkyl peroxides undergo carbon—oxygen fission, forming acychc alkyl hydroperoxides and aralkyl carbonium ions. The latter react with nucleophiles,... [Pg.107]

In the presence of base, di-Z f/-alkyl peroxides are stable, however primary and secondary diaLkyl peroxides undergo oxygen—oxygen bond cleavage, forming alcohols, aldehydes, and ketones (44,66) ... [Pg.108]

DiaLkyl peroxides also undergo nucleophilic displacements by organometaUic compounds ... [Pg.108]

Primary and secondary dialkyl peroxides react much mote readily than di-/ fZ-alkyl peroxides (66,76). Products derived from the free radical are also produced in these reactions. [Pg.108]

Substitution reactions on dialkyl peroxides without concurrent peroxide cleavage have been reported, eg, the nitration of dicumyl peroxide (44), and the chlorination of di-/ fZ-butyl peroxide (77). Bromination by nucleophilic displacement on a-chloro- or a-hydroxyalkyl peroxides with hydrogen bromide produces a-bromoalkyl peroxides (78). [Pg.108]

Synthesis. Dialkyl peroxides are prepared by the reaction of various substrates with hydrogen peroxide, hydroperoxides, or oxygen (69). They also have been obtained from reactions with other organic peroxides. For example, dialkyl peroxides have been prepared by the reaction of hydrogen peroxide and alkyl hydroperoxides with alMating agents, eg, RX and olefins (33,66,97) (eqs. 24—27). [Pg.109]

Reaction conditions depend on the reactants and usually involve acid or base catalysis. Examples of X include sulfate, acid sulfate, alkane- or arenesulfonate, chloride, bromide, hydroxyl, alkoxide, perchlorate, etc. RX can also be an alkyl orthoformate or alkyl carboxylate. The reaction of cycHc alkylating agents, eg, epoxides and a2iridines, with sodium or potassium salts of alkyl hydroperoxides also promotes formation of dialkyl peroxides (44,66). Olefinic alkylating agents include acycHc and cycHc olefinic hydrocarbons, vinyl and isopropenyl ethers, enamines, A[-vinylamides, vinyl sulfonates, divinyl sulfone, and a, P-unsaturated compounds, eg, methyl acrylate, mesityl oxide, acrylamide, and acrylonitrile (44,66). [Pg.109]

The following commercially available dialkyl peroxides are produced according to equations 24—27 di-Z fZ-butyl peroxide from hydrogen peroxide and sulfated tert-huty alcohol or isobutylene dicumyl peroxide from a-cumyl hydroperoxide and cumyl alcohol, cumyl chloride, and/or a-methylstyrene m- and -di(2-/ f2 -butylperoxyisopropyl)ben2ene [2781-00-2] from tert-huty hydroperoxide [75-91-2] and m- and -di(2-hydroxyisopropyl)ben2ene ... [Pg.109]

Primary and secondary alkyl haUdes and sulfonates react with potassium superoxide to form dialkyl peroxides (101,102) (eq. 28). Dia2oalkanes, eg, dia2omethane, have been used to alkylate hydroperoxides (66) (eq. 29). [Pg.109]

Unsymmetrical dialkyl peroxides are obtained by the reaction of alkyl hydroperoxides with a substrate, ie, R H, from which a hydrogen can be abstracted readily in the presence of certain cobalt, copper, or manganese salts (eq. 30). However, this process is not efficient since two moles of the hydroperoxide are consumed per mole of dialkyl peroxide produced. In addition, side reactions involving free radicals produce undesired by-products (44,66). [Pg.109]

Syimnetiical dialkyl peroxides have been prepared from alkyl hydroperoxides and lead tetraacetate. If tertiary dihydroperoxides are used, then cychc... [Pg.109]

DiaLkyl peroxides may be prepared by reaction of alcohols or alkyl trifluoromethanesulfonates with organomineral peroxides of siUcon, tin, and germanium (44,108), where Q = Sn and Ge ... [Pg.110]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

The a-oxygen-substituted hydroperoxides and dialkyl peroxides comprise a great variety as shown in Figure 1. When discussing peroxides derived from ketones and hydrogen peroxide, (1) is often referred to as a ketone peroxide monomer and (2) as a ketone peroxide dimer. [Pg.111]

Hydroxyalkyl hydroperoxides from cycHc ketones (1), where X = OH, R =, H and R, R = alkylene, apparentiy exist in solution as equihbrium mixtures of the cycHc ketone, hydrogen peroxide, and other peroxides, eg, the dihydroperoxide (1) in which X = OOH, and dialkyl peroxides (2) where X = OH and Y = OH or OOH. Due to the existence of this equihbrium, the latter two dialkyl peroxides react as mixtures of monomeric hydroperoxides in solution. [Pg.112]

Hydroxyalkyl hydroperoxides having at least one a-hydrogen ie, (7, X = OH, R = alkyll, R = R = H), ie, those derived from aldehydes, lose hydrogen peroxide and form dialkyl peroxides (2, X = Y = OH), especially in the presence of water ... [Pg.112]

Secondary alcohols, such as isopropyl alcohol, j -butyl alcohol, 2-pentanol, 3-pentanol, cyclopentanol, and cyclohexanol, have been autoxidized to hydroxyaLkyl hydroperoxides (1, X = OH R = H) (10,44). These autoxidations usually are carried out at ca 20°C with uv radiation in the presence of a photosensitizer, eg, benzophenone. a-Oxygen-substituted dialkyl peroxides (2, X = Y = OH and X = Y = OOH), also are formed and sometimes they are the exclusive products (10). [Pg.113]

Commercially available MEKP formulations are mixtures of the dihydroperoxide (1), where X = OOH R = H, R = methyl, and R = ethyl (2,2-dihydroperoxybutane [2625-67 ]) and dialkyl peroxide (2), where X = OOH, Y = OOH, R = methyl, and R = ethyl (di(2-hydroperoxy-2-butyl) peroxide [126-76-1J). These formulations are widely used as free-radical initiators in the metal-promoted cure of unsaturated polyester resins at about 20°C. [Pg.114]


See other pages where Peroxides dialkyl is mentioned: [Pg.292]    [Pg.223]    [Pg.226]    [Pg.105]    [Pg.106]    [Pg.106]    [Pg.107]    [Pg.108]    [Pg.108]    [Pg.111]    [Pg.111]    [Pg.111]    [Pg.115]    [Pg.116]    [Pg.117]    [Pg.132]    [Pg.132]    [Pg.132]    [Pg.134]   
See also in sourсe #XX -- [ Pg.227 ]

See also in sourсe #XX -- [ Pg.227 ]

See also in sourсe #XX -- [ Pg.92 ]

See also in sourсe #XX -- [ Pg.641 ]

See also in sourсe #XX -- [ Pg.208 ]

See also in sourсe #XX -- [ Pg.154 ]

See also in sourсe #XX -- [ Pg.488 ]

See also in sourсe #XX -- [ Pg.175 ]

See also in sourсe #XX -- [ Pg.227 ]

See also in sourсe #XX -- [ Pg.324 ]




SEARCH



Acid-catalyzed synthesis, dialkyl peroxides

Atmosphere dialkyl peroxides

Cyclic peroxides dialkyl

Dialkyl ketone peroxides

Dialkyl peroxides alkoxy radicals from

Dialkyl peroxides autoxidation

Dialkyl peroxides commercial availability

Dialkyl peroxides decomposition mechanisms

Dialkyl peroxides formation

Dialkyl peroxides graft polymerization initiation

Dialkyl peroxides hydroperoxide determination

Dialkyl peroxides induced decomposition

Dialkyl peroxides metal-catalyzed

Dialkyl peroxides thermal decomposition

Dialkyl peroxides, decomposition

Dialkyl peroxides, detection

Dialkyl peroxides, polymeric

Dialkyl peroxides, synthesis

Dialkyl peroxides, thermolysis

Dialkyl peroxydicarbonates. organic peroxide

Formation of dialkyl peroxides

Free radicals dialkyl peroxide decomposition

Hydrogen peroxide oxidation of dialkyl sulfides

Peroxides dialkyl, from hydroperoxides

Radical polymerization dialkyl peroxides

Structure dialkyl peroxides

© 2024 chempedia.info