Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic free radical polymerizations

Catalysts of the Ziegler-Natta type are applied widely to the anionic polymerization of olefins and dienes. Polar monomers deactivate the system and cannot be copolymerized with olefins. J. L. Jezl and coworkers discovered that the living chains from an anionic polymerization can be converted to free radicals by the reaction with organic peroxides and thus permit the formation of block copolymers with polar vinyl monomers. In this novel technique of combined anionic-free radical polymerization, they are able to produce block copolymers of most olefins, such as alkylene, propylene, styrene, or butadiene with polar vinyl monomers, such as acrylonitrile or vinyl pyridine. [Pg.10]

Although the preferred route of polymerization is anionic, free-radical polymerization is also possible, particularly at higher temperatures. Thus, low levels of suitable inhibitors, e.g., hydroquinone, p-methox-yphenol, 2,6-di- -butyl-4-methylphenol, etc., may also be incorporated in the adhesive formulation. The type and concentration of such stabilizers may be determined by RPLC with UV detection. [Pg.46]

It might be noted that most (not all) alkenes are polymerizable by the chain mechanism involving free-radical intermediates, whereas the carbonyl group is generally not polymerized by the free-radical mechanism. Carbonyl groups and some carbon-carbon double bonds are polymerized by ionic mechanisms. Monomers display far more specificity where the ionic mechanism is involved than with the free-radical mechanism. For example, acrylamide will polymerize through an anionic intermediate but not a cationic one, A -vinyl pyrrolidones by cationic but not anionic intermediates, and halogenated olefins by neither ionic species. In all of these cases free-radical polymerization is possible. [Pg.349]

Despite numerous efforts, there is no generally accepted theory explaining the causes of stereoregulation in acryflc and methacryflc anionic polymerizations. Complex formation with the cation of the initiator (146) and enoflzation of the active chain end are among the more popular hypotheses (147). Unlike free-radical polymerizations, copolymerizations between acrylates and methacrylates are not observed in anionic polymerizations however, good copolymerizations within each class are reported (148). [Pg.170]

One of the key benefits of anionic PS is that it contains much lower levels of residual styrene monomer than free-radical PS (167). This is because free-radical polymerization processes only operate at 60—80% styrene conversion, whereas anionic processes operate at >99% styrene conversion. Removal of unreacted styrene monomer from free-radical PS is accompHshed using continuous devolatilization at high temperature (220—260°C) and vacuum. This process leaves about 200—800 ppm of styrene monomer in the product. Taking the styrene to a lower level requires special devolatilization procedures such as steam stripping (168). [Pg.517]

There are two problems in the manufacture of PS removal of the heat of polymeriza tion (ca 700 kj /kg (300 Btu/lb)) of styrene polymerized and the simultaneous handling of a partially converted polymer symp with a viscosity of ca 10 mPa(=cP). The latter problem strongly aggravates the former. A wide variety of solutions to these problems have been reported for the four mechanisms described earlier, ie, free radical, anionic, cationic, and Ziegler, several processes can be used. Table 6 summarizes the processes which have been used to implement each mechanism for Hquid-phase systems. Free-radical polymerization of styrenic systems, primarily in solution, is of principal commercial interest. Details of suspension processes, which are declining in importance, are available (208,209), as are descriptions of emulsion processes (210) and summaries of the historical development of styrene polymerization processes (208,211,212). [Pg.521]

Acrylic esters can be polymerized by a number of routes. Anionic polymerization gives the narrow standards used primarily for calibration, but is not used on an industrial/commercial scale. Free-radical polymerization is the dominant mode of polymerization for making these polymers on an industrial scale. Significant volumes of polymer are made by both solution polymerization... [Pg.539]

The block copolymer produced by Bamford s metal carbonyl/halide-terminated polymers photoinitiating systems are, therefore, more versatile than those based on anionic polymerization, since a wide range of monomers may be incorporated into the block. Although the mean block length is controllable through the parameters that normally determine the mean kinetic chain length in a free radical polymerization, the molecular weight distributions are, of course, much broader than with ionic polymerization and the polymers are, therefore, less well defined,... [Pg.254]

Styrene Free radical polymerization similar to the above. Also susceptible to rapid cationic polymerization induced by AlCb at —80°C and to anionic polymerization using alkali metals or their hydrides —CH2—CH— (ieHs T = 100 Amorphous, even when stretched. Hard. Soluble in aromatic hydrocarbons, higher ketones, and esters... [Pg.52]

Free radical polymerization similar to acrylonitrile. Also undergoes vigorous anionic polymerization in presence of RMgX or Na in liquid NHs... [Pg.53]

The role of reactive centers is performed here by free radicals or ions whose reaction with double bonds in monomer molecules leads to the growth of a polymer chain. The time of its formation may be either essentially less than that of monomer consumption or comparable with it. The first case takes place in the processes of free-radical polymerization whereas the second one is peculiar to the processes of living anionic polymerization. The distinction between these two cases is the most greatly pronounced under copolymerization of two and more monomers when the change in their concentrations over the course of the synthesis induces chemical inhomogeneity of the products formed not only for size but for composition as well. [Pg.175]

Anionic polymerization of polystyrene takes place very rapidly- much faster than free radical polymerization. When practiced on a large scale, this gives rise to heat transfer problems and limits its commercial practice to special cases, such as block copolymerization by living reactions. We employ anionic polymerization to make tri-block copolymer rubbers such as polystyrene-polybutadiene-polystyrene. This type of synthetic rubber is widely used in the handles of power tools, the soft grips of pens, and the elastic side panels of disposable diapers. [Pg.331]

Free radical polymerization combined with anionic ring polymerization was employed for the synthesis of poly(N-vinylpyrrolidone)-fr-poly(D,L-lactide), PVP-fr-PDLLA, as shown in Scheme 49 [121]. The free radical polymerization of VP was conducted using 2,2/-azobis[2-methyl-M-(2-hydroxyethyl)propionamide] as the initiator, isopropyl alcohol and 2-... [Pg.65]

A bulky methacrylate, triphenylmethyl methacrylate (TrMA), is a unique monomer which gives an almost 100% isotactic polymer in anionic polymerization with n-butyllithium both in nonpolar and polar solvents. Moreover, even free-radical polymerization affords a highly isotactic polymer from this monomer.23 The isotactic specificity of TrMA polymerization is ascribed to the helical formation of the main chain. When TrMA is polymerized in toluene at —78°C... [Pg.161]

Compared to today s elegant methods based on anionic polymerization, the early work involved relatively crude free radical polymerization, but the idea itself (and the concomitant nomenclature) represented a real advance in polymer synthesis. [Pg.103]

Fig. 27. Molar mass dependence of [rj] for a fractionated comb macromolecule. The fractionation was made with a SEC/LALLS/VISC set-up. The comb macromolecule consists oi a polyimidazole backbone prepared by free radical polymerization. The imidazol side groups acted in a melt with phenylglycidylether and phthalic anhydride as multifunctional initiator for the anionic growth of polyester chains. The straight lines correspond to the behavior of unattached polyester chains and the comb polymers at low and high molar masses respectively [136]... Fig. 27. Molar mass dependence of [rj] for a fractionated comb macromolecule. The fractionation was made with a SEC/LALLS/VISC set-up. The comb macromolecule consists oi a polyimidazole backbone prepared by free radical polymerization. The imidazol side groups acted in a melt with phenylglycidylether and phthalic anhydride as multifunctional initiator for the anionic growth of polyester chains. The straight lines correspond to the behavior of unattached polyester chains and the comb polymers at low and high molar masses respectively [136]...
Another system under investigation is the iron/ chromium redox flow battery (Fe/Cr RFB) developed by NASA. The performance requirements of the membrane for Fe/Cr RFB are severe. The membrane must readily permit the passage of chloride ions, but should not allow any mixing of the chromium and iron ions. An anionic permselective membrane CDIL-AA5-LC-397, developed by Ionics, Inc., performed well in this system. ° It was prepared by a free radical polymerization of vinylbenzyl chloride and dimethylaminoethyl methacrylate in a 1 1 molar ratio. One major issue with the anionic membranes was its increase in resistance during the time it was exposed to a ferric chloride solution. The resistance increase termed fouling is related to the ability of the ferric ion to form ferric chloride complexes, which are not electrically repelled by the anionic membrane. An experiment by Arnold and Assink indicated that... [Pg.218]

Although PS is largely commercially produced using free radical polymerization, it can be produced by all four major techniques—anionic, cationic, free radical, and coordination-type systems. All of the tactic forms can be formed employing these systems. The most important of the tactic forms is syndiotactic polystyrene (sPS). Metallocene-produced sPS is a semicrystalline material with a of 270°C. It was initially produced by Dow in 1997 under the trade name Questra. It has good chemical and solvent resistance in contrast to regular PS that has generally poor chemical and solvent resistance because of the presence of voids that are exploited by the solvents and chemicals. [Pg.194]

Strongly electrophilic or nucleophilic monomers will polymerize exclusively by anionic or cationic mechanisms. However, monomers that are neither strongly electrophilic nor nucleophilic generally polymerize by ionic and free radical processes. The contrast between anionic, cationic, and free radical methods of addition copolymerization is clearly illustrated by the results of copolymerization utilizing the three modes of initiation (Figure 7.1). Such results illustrate the variations of reactivities and copolymer composition that are possible from employing the different initiation modes. The free radical tie-line resides near the middle since free radical polymerizations are less dependent on the electronic nature of the comonomers relative to the ionic modes of chain propagation. [Pg.211]


See other pages where Anionic free radical polymerizations is mentioned: [Pg.517]    [Pg.246]    [Pg.748]    [Pg.26]    [Pg.147]    [Pg.482]    [Pg.51]    [Pg.110]    [Pg.220]    [Pg.245]    [Pg.41]    [Pg.48]    [Pg.87]    [Pg.23]    [Pg.85]    [Pg.167]    [Pg.1]    [Pg.10]    [Pg.1]    [Pg.413]    [Pg.35]    [Pg.90]    [Pg.252]    [Pg.135]    [Pg.429]    [Pg.7]    [Pg.26]    [Pg.110]   
See also in sourсe #XX -- [ Pg.268 ]




SEARCH



Anion-free

Anionic polymerization radical anions

Free radicals radical anions

Polymerization free radical

© 2024 chempedia.info