Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Method validation specificity testing

Since achieving specificity is often the most difficult aspect of developing an assay, establishing specificity is inextricably involved in the method development process. Therefore when it comes to validation, it should be simply a case of demonstrating specificity. It may be the case that when more thorough checks are made as in the validation specificity tests, the method is not as specific as was first thought. [Pg.156]

Uses raw data from field tests to compute hydraulic conductivity computed value is evaluated by the expert system for its correctness with regard to these considerations site-specific geological characteristics, validity of test procedures, accuracy of the raw data, and the computational method. System is written in Arity-Prolog on a PC. [Pg.292]

Control All control points starting with the basic raw materials right through to the finished product must be identified. Descriptions of the specifications, test methods, reference standards, and methods validation data should be included. [Pg.103]

Consistent with other analytical methods, immunoassays must be validated to ensure that assay results are accurate. Initial validation involves an evaluation of the sensitivity and specificity of the immunoassay, while later validation includes comparison with a reference method. Because a goal of immunoassays is to minimize sample preparation, validation also includes testing the effects of sample matrices and(or) sample cleanup methods on results. The final steps in validation involve testing a limited number of samples containing incurred residues to determine if the method provides reliable data. [Pg.646]

For non-compendial procedures, the performance parameters that should be determined in validation studies include specificity/selectivity, linearity, accuracy, precision (repeatability and intermediate precision), detection limit (DL), quantitation limit (QL), range, ruggedness, and robustness [6]. Other method validation information, such as the stability of analytical sample preparations, degradation/ stress studies, legible reproductions of representative instrumental output, identification and characterization of possible impurities, should be included [7], The parameters that are required to be validated depend on the type of analyses, so therefore different test methods require different validation schemes. [Pg.244]

Part—I has three chapters that exclusively deal with General Aspects of pharmaceutical analysis. Chapter 1 focuses on the pharmaceutical chemicals and their respective purity and management. Critical information with regard to description of the finished product, sampling procedures, bioavailability, identification tests, physical constants and miscellaneous characteristics, such as ash values, loss on drying, clarity and color of solution, specific tests, limit tests of metallic and non-metallic impurities, limits of moisture content, volatile and non-volatile matter and lastly residue on ignition have also been dealt with. Each section provides adequate procedural details supported by ample typical examples from the Official Compendia. Chapter 2 embraces the theory and technique of quantitative analysis with specific emphasis on volumetric analysis, volumetric apparatus, their specifications, standardization and utility. It also includes biomedical analytical chemistry, colorimetric assays, theory and assay of biochemicals, such as urea, bilirubin, cholesterol and enzymatic assays, such as alkaline phosphatase, lactate dehydrogenase, salient features of radioimmunoassay and automated methods of chemical analysis. Chapter 3 provides special emphasis on errors in pharmaceutical analysis and their statistical validation. The first aspect is related to errors in pharmaceutical analysis and embodies classification of errors, accuracy, precision and makes... [Pg.539]

Test methods used in the laboratory are generally derived from pharmacopoeias such as the US Pharmacopoeia, British Pharmacopoeia, or European Pharmacopoeia. For test methods that are not from recognized pharmacopoeias, validation of the analytical methods is required. The validation includes testing for accuracy, specificity, ruggedness, robustness, precision, detection limit, quantitation hmit, and range. A discussion of analytical methods vahda-tion is presented in Section 9.6.5. [Pg.295]

Further discussion of method validation can be found in Chapter 7. However, it should be noted from Table 11 that it is frequently desirable to perform validation experiments beyond ICH requirements. While ICH addresses specificity, accuracy, precision, detection limit, quantitation limit, linearity, and range, we have found it useful to additionally examine stability of solutions, reporting threshold, robustness (as detailed above), filtration, relative response factors (RRF), system suitability tests, and where applicable method comparison tests. [Pg.183]

For each item of the specification of a particular drug substance or drug product, a validated testing method describes the tests and the acceptance criteria. For each test, the method will be outlined in detail so that... [Pg.274]

Analytical data generated in a testing laboratory are generally used for development, release, stability, or pharmacokinetic studies. Regardless of what the data are required for, the analytical method must be able to provide reliable data. Method validation (Chapter 7) is the demonstration that an analytical procedure is suitable for its intended use. During the validation, data are collected to show that the method meets requirements for accuracy, precision, specificity, detection limit, quantitation limit, linearity, range, and robustness. These characteristics are those recommended by the ICH and will be discussed first. [Pg.276]

HPLC methods can usually be transferred without many modifications, since most commercially available HPLC instruments behave similarly. This is certainly true when the columns applied have a similar selectivity. One adaptation, sometimes needed, concerns the gradient profiles, because of different instrumental or pump dead-volumes. However, larger differences exist between CE instruments, e.g., in hydrodynamic injection procedures, in minimum capillary lengths, in capillary distances to the detector, in cooling mechanisms, and in the injected sample volumes. This makes CE method transfers more difficult. Since robustness tests are performed to avoid transfer problems, these tests seem even more important for CE method validation, than for HPLC method validation. However, in the literature, a robustness test only rarely is included in the validation process of a CE method, and usually only linearity, precision, accuracy, specificity, range, and/or limits of detection and quantification are evaluated. Robustness tests are described in references 20 and 59-92. Given the instrumental transfer problems for CE methods, a robustness test guaranteeing to some extent a successful transfer should include besides the instrument on which the method was developed at least one alternative instrument. [Pg.210]

Currently there are few methods for specific investigation of immunotoxic effects, which are regarded as sufficiently validated for routine use (EC 2003). The plaque forming assay or the equivalent using the ELISA method (Enzyme-linked Immunosorbent Assay) are recommended to identify altered T-cell-dependent humoral responses. Of particular value for hazard assessment are the so-called host resistance models, in which the clinical relevance of immunotoxicity can be evaluated. Other methods may also be of value to provide information on the mode of immunotoxic action, e.g., mitogen stimulation tests and leucocyte phenotyping. However, further work is needed on standardization and validation of these test methods. [Pg.139]

The requirements with which the final product (bulk material or dose form) must comply throughout its period of validity, as well as specific test methods, are stated in the individual monograph. [Pg.520]

It is an essential condition of biological assay methods that the tests on the standard preparation and on the sample whose potency is being determined should be carried out at the same time and, in all other respects, under strictly comparable conditions. The validation of microbiological assay method includes performance criteria (analytical parameters) such as linearity, range, accuracy, precision, specificity, etc. [Pg.436]

The ISO definition of validation is confirmation by examination and provision of objective evidence that the particular requirements of a specified intended use are fulfilled [15]. Method validation is needed to confirm the fitness for purpose of a particular analytical method, that is, to demonstrate that a defined method protocol, applicable to a specified type of test material and to a defined concentration rate of the analyte —the whole is called the analytical system — is fit for a particular analytical purpose [4]. This analytical purpose reflects the achievement of analytical results with an acceptable standard of accuracy. An analytical result must always be accompanied by an uncertainty statement, which determines the interpretation of the result (Figure 6). In other words, the interpretation and use of any measurement fully depend on the uncertainty (at a stated level of confidence) associated with it [8]. Validation is thus the tool used to demonstrate that a specific analytical method actually measures what it is intended to measure and thus is suitable for its intended purpose [11,55,56]. [Pg.758]

Method validation should confirm that the analytical procedure employed for a specific test is suitable for its intended use. The validation of an analytical method... [Pg.825]

It has to be said, there are a remarkable mix of topics in this section, ranging through a complete discussion of biotechnology-derived articles (<1045> and <1047>), cell and gene therapy products (<1046>), and validation of compendial (test) methods (<1225>). Specific methods for detection and measurement of suspended particulate matter are discussed in <788>, and there are detailed instructions on how to measure weights, <41>, volume <31>, or temperature <21>. Every student and, indeed, their supervisors need to be aware of what is in this valuable section there is so much valuable information that the compilers cannot be praised enough. [Pg.387]

The specificity tests depend on the type and purpose of the method. If a specific method is being validated, an interference study should be undertaken. In the case above of the analysis of citric acid and sodium citrate, all other ingredients except microcrystalline cellulose and carboxymethyl cellulose sodium should be chromatographed separately. The known impurities related to memetasone furoate, if available, should be injected as well as the diluting solvent. Interference from filters is required. For nonspecific methods, specificity studies must be determined on a case-by-case basis. For example, the determination of molar ratio of citric acid and sodium citrate by pH in Nasonex should be designed to exclude any other contribution of acidity from other ingredients. [Pg.91]

System Suitability. Although method validation is performed once at the end of method development, system suitability tests are performed on a specific system periodically (usually daily) or prior to each batch during validation and sample analysis to determine the system performance (see Chapter 13). During method development or/and upon completion of the validation, system suitability data should be evaluated and used to define acceptance criteria to use before starting sample analysis. System suitability tests include (1) the reproducibility of retention time, (2) adequate sensitivity to quantify LLOQ (minimum detector response), (3) appropriate sensitivity to quantify ULOQ (within range of detector), and (4) chromatographic separation. [Pg.128]

Fit the purpose calibration. It is common sense to check instrument performance each day, and GLP requirements simply formalize the performance and documentation of these checks. On the other hand, it is also important to use the right test (full calibration, verification, system suitability test, or instrument and method validation) to verify the performance and to avoid needlessly lengthy procedures. As already discussed (see Sections 13.2.3 and 13.3.1), it is not always necessary to perform a MS full calibration every day. For example, if a particular MS is used only to record complete full-scan mass spectra, a daily calibration or verification of the calibration of the m/z ratio scale is required. However, in the case where a MS is coupled with an LC and utilized primarily for the analysis of one or more analytes in the selected ion monitoring (SIM) mode, it does not always require a daily verification of the calibration. In this specific case it is quite common in LC-MS and LC-MS/MS applications to test only the following performance parameters (a) sensitivity, (b) system precision,... [Pg.217]

Recently, major developments in statistical methods have been made particularly in the areas of collaborative studies and method validation and robustness testing. In addition, analytical method development and validation have assumed a new importance. However, this handbook is not intended to be a list of statistical procedures but rather a framework of approaches and an indication of where detailed statistical methods may be found. Whilst it is recognised that much of the information required is available in the scientific literature, it is scattered and not in a readily accessible format. In addition, many of the requirements are written in the language of the statistician and it was felt that a clear concise collation was needed which has been specifically written for the practising analytical chemist. This garnering of existing information is intended to provide an indication of current best practices in these areas. Where examples are given the intent is to illustrate important points of principle and best practice. [Pg.2]


See other pages where Method validation specificity testing is mentioned: [Pg.254]    [Pg.235]    [Pg.264]    [Pg.113]    [Pg.114]    [Pg.321]    [Pg.444]    [Pg.1041]    [Pg.1069]    [Pg.746]    [Pg.715]    [Pg.423]    [Pg.20]    [Pg.33]    [Pg.166]    [Pg.281]    [Pg.22]    [Pg.48]    [Pg.187]    [Pg.228]    [Pg.314]    [Pg.747]    [Pg.236]    [Pg.255]    [Pg.55]    [Pg.231]    [Pg.233]    [Pg.235]    [Pg.370]    [Pg.391]   
See also in sourсe #XX -- [ Pg.490 ]




SEARCH



Method specificity

Method validation specificity

Method validation testing

Specific tests

Specification validation

Test validity

Testing specifications

Validated methods

© 2024 chempedia.info