Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Human umbilical endothelial cells

A study has been undertaken to clarify whether glucocorticoid excess affects endothelium-dependent vascular relaxation in glucocorticoid treated patients and whether dexamethasone alters the production of hydrogen peroxide and the formation of peroxynitrite, a reactive molecule between nitric oxide and superoxide, in cultured human umbilical endothelial cells (7). Glucocorticoid excess impaired endothelium-dependent vascular relaxation in vivo and enhanced the production of reactive oxygen species to cause increased production of peroxynitrite in vitro. Glucocorticoid-induced reduction in nitric oxide availability may cause vascular endothelial dysfunction, leading to hypertension and atherosclerosis. [Pg.4]

There are several lines of evidence demonshahng that CSA causes endothelial cell injury. CSA has a direct cytotoxic effect on cultured endothelial cells and inhibits human umbilical endothelial cell proliferahon [74,75]. CSA increases the plasma level of endothelial damage markers, such as Von Willebrand factor, endothelin tissue factor pathway inhibitor, P-selectin and thrombin-antithrombin complexes in renal and heart transplant patients [76-79]. Similarly, the release of Von... [Pg.620]

ELAM-1 and lCAM-1 expressions in cultured human umbilical endothelial cells... [Pg.434]

Fig. 3. Property of gene delivery with BLs and US exposure (a) Schema of transfection mechanism by BLs and US. The mechanical effect based on the disruption of BLs by US exposure, which results in generation of some pores on plasma membrane, is associated with direct delivery of extracellular plasmid DNA into cytosol, (b) Luciferase expression in COS-7 cells transfected by BLs and US. COS-7 cells (1x10 cells/500 pLAube) were mixed wifh pCMV-Luc (5 pg) and BLs (60 pg). The cell mixture was exposed with US (Frequency 2 MHz, Duty 50%, Burst rate 2 Hz, Intensity 2.5 W/ cm. Time 10 s). The cells were washed and cultured for 2 days. Affer fhaf, luciferase acfivify was measured, (c) Effecf of US condition on transfection efficiency with BLs. COS-7 cells were exposed with US (Frequency 2 MHz, Duty 50%, Burst rate 2 Hz, Intensity 2.5 W/cm Time 0,1, 5,10 s) in the presence of pCMV-Luc (0.25 pg) and BLs (60 pg). Luciferase activity was measured as above, (d) Effect of serum on transfection efficiency of BLs. COS-7 cells in the medium containing EBS (0,10, 30, 50% (v/v)) were treated with US (Erequency 2 MHz, Duty 50%, Burst rate 2 Hz, Intensity 2.5 W/cm, Time 10 s), pCMV-Luc (0.25 pg) and BLs (60 pg) or transfected with lipoplex of pCMV-Luc (0.25 pg) and lipofectin (1.25 pg). (e) In vitro gene delivery to various types of cell using BLs and US. The method of gene delivery was same as above. S-180 mouse sarcoma cells, Colon26 mouse colon adenocarcinoma cells, B16BL6 mouse melanoma cells, Jurkat human T cell line, HUVEC human umbilical endothelial cells. Luciferase activity was measured as above. <10 RLU/mg protein, <10 RLU/mg protein Each data represents the mean S.D. n=3). L PEG-liposomes, LF Lipotectin... Fig. 3. Property of gene delivery with BLs and US exposure (a) Schema of transfection mechanism by BLs and US. The mechanical effect based on the disruption of BLs by US exposure, which results in generation of some pores on plasma membrane, is associated with direct delivery of extracellular plasmid DNA into cytosol, (b) Luciferase expression in COS-7 cells transfected by BLs and US. COS-7 cells (1x10 cells/500 pLAube) were mixed wifh pCMV-Luc (5 pg) and BLs (60 pg). The cell mixture was exposed with US (Frequency 2 MHz, Duty 50%, Burst rate 2 Hz, Intensity 2.5 W/ cm. Time 10 s). The cells were washed and cultured for 2 days. Affer fhaf, luciferase acfivify was measured, (c) Effecf of US condition on transfection efficiency with BLs. COS-7 cells were exposed with US (Frequency 2 MHz, Duty 50%, Burst rate 2 Hz, Intensity 2.5 W/cm Time 0,1, 5,10 s) in the presence of pCMV-Luc (0.25 pg) and BLs (60 pg). Luciferase activity was measured as above, (d) Effect of serum on transfection efficiency of BLs. COS-7 cells in the medium containing EBS (0,10, 30, 50% (v/v)) were treated with US (Erequency 2 MHz, Duty 50%, Burst rate 2 Hz, Intensity 2.5 W/cm, Time 10 s), pCMV-Luc (0.25 pg) and BLs (60 pg) or transfected with lipoplex of pCMV-Luc (0.25 pg) and lipofectin (1.25 pg). (e) In vitro gene delivery to various types of cell using BLs and US. The method of gene delivery was same as above. S-180 mouse sarcoma cells, Colon26 mouse colon adenocarcinoma cells, B16BL6 mouse melanoma cells, Jurkat human T cell line, HUVEC human umbilical endothelial cells. Luciferase activity was measured as above. <10 RLU/mg protein, <10 RLU/mg protein Each data represents the mean S.D. n=3). L PEG-liposomes, LF Lipotectin...
Another type of carbon layer useful for the preparation of biocompatible surfaces includes chemical and physical vapor deposition. The preparation of the carbon layers on pol3rtetrafluoroethylene (PTFE) by photoinduced CVD from acetylene and their physical properties and chemical structure have been studied. These properties related to the adhesion and proliferation of human umbilical endothelial cells (HUVEC) seeded thereon were characterized [39]. [Pg.192]

It is still unclear whether neutrophil binding to the endothelial cell surface affects VE-cadherin functions (Vestweber 2000). It was proposed that adhesion of polymorphonuclear leucocytes to human umbilical endothelial cells leads to the disorganisation of the VE-cadherin-dependent endothe-... [Pg.609]

The ethanol extract of Comus officinalis fiiiits acts as an efficient scavenger of hydroxyl radicals and protects human umbilical endothelial cells against peroxide indueed apoptosis [Lee et al., 2006]. The Japanese cornel fruits extract have been reported to possess greater reducing power than vitamin E [Lim et al., 2011]. [Pg.181]

When using human umbilical endothelial cells (HUVECs) as a model of the vascular endothelium, hemispherical pSi microparticles were shown to be inter-... [Pg.393]

Salcedo R, Resau JH, Halverson D, et al. Differential expression and responsiveness of chemokine receptors (CXCR1-3) by human microvascular endothelial cells and umbilical vein endothelial cells. FASEB J 2000 14(13) 2055-2064. [Pg.330]

Ko, Y., Glodny, B., Stier, S., et al. 1997. Angiotensin type-1 (ATI) receptor gene expression in primarily cultured human arterial umbilical endothelial cells. Biochem Pharmacol 53 417-421. [Pg.111]

Human umbilical vein endothelial cells (HUVEC) express the isoforms ECE-la, -lb, -Id and ECE-2. In these cells, ET-1 is secreted via both a constitutive and a regulated pathway. The ratio of released ET-1 big-ET-1 is 4 1. About 80% of the ET-1 is secreted at the abluminal cell surface of endothelial cells. ECE-isoforms are abundantly expressed on the cell surface of endothelial cells and to a lower level also on vascular smooth muscle cells. In atherosclerotic lesions of vessels, however, ECE expression in smooth muscle cells is upregulated. ECE isoforms expressed in smooth muscle cells contribute significantly to the generation of mature ET in normal and in particular atherosclerotic vessels. [Pg.472]

Expression (Human) Tissues Leukocytes, thymus, spleen, liver, ovary Cells PBLs, neutrophils,T-cells, dendritic cells, mast cells, eosinophils, macrophages, leukocytes Tissues spleen, small intestine, placenta, lung smooth muscle, Cells bronchial smooth muscle, CD34+ hemapoietic progenitor cells, monocytes, macrophages, mast cells, eosinophils, neutrophils, PBLs, human umbilical vein endothelial cells Tissues, heart, skeletal muscle, spleen, brain, lymp node, adrenal medulla, lung, human pumonary/ saphenous vein Cells monocytes, macrophages, mast cells, eosinophils, cardiac muscle, coronary artery, PBLs... [Pg.688]

The adherence and proliferation of human umbilical vein endothelial cells (HUVECs) were evaluated on the fabricated PCLA scaffold. Results showed that the HUVECs were adhered and proliferated well on the small-diameter-fiber fabrics (0.3 and 1.2 mm in diameter), whereas markedly reduced cell adhesion, restricted cell spreading, and no signs of proliferation were observed on the large-diameter-fiber fabric (7 mm in diameter). That may be due to the high-surface-density fibers provide an extremely high surface/volume ratio, which favors cell attachment and proliferation. [Pg.229]

Schmaier AH, Kuo A, Lundberg D, Murray S, Cines DB The expression of high molecular weight kininogen on human umbilical vein endothelial cells. J Biol Chem 1988 263 16327-16333. [Pg.81]

Kaneko et al. (1993) have described a group of lipophilic ascorbic-acid analogues that have been studied in cultured human umbilical vein endothelial cells that were first incubated with test drug and then exposed to lipid hydroperoxides. Although ascorbate itself did not protect the endothelial cells, derivatives like CV3611 protected. Pretreatment was necessary. CV3611 was synergistic with vitamin E. The authors concluded that these lipophilic antioxidants incorporate into endothelial cell membranes where they are effective inhibitors of lipid peroxidation. In contrast, lipophobic antioxidants were not effective in their hands (Kaneko et al., 1993). [Pg.267]

HUVEC Human umbilical vein endothelial cell... [Pg.283]

Gentilini G, Kirschbaum NE, Augustine JA, Aster RH, Visentin GP. Inhibition of human umbilical vein endothelial cell proliferation by the CXC chemokine, platelet factor 4 (PF4), is associated with impaired downregulation of p21(CiplAVAFl). Blood 1999 93(1) 25—33. [Pg.334]

MDCK (Madin-Darby canine kidney) cells are derived from distal tubules, whereas LLC-PKi are from proximal tubes. b BMEC (brain microvessel endothelial cells) are isolated from capillaries. BPAEC (bovine pulmonary artery endothelial cells), BAEC (bovine aortic endothelial cells), and HUVEC (human umbilical vein endothelial cells) are large vessel endothelia. [Pg.241]

Flahaut, E. et al. (2006) Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon, 44 (6), 1093-1099. [Pg.216]

Schweitzer KM, Vicart P, Delouis C, Paulin D, Drager AM, Langenhuijsen MM, Weksler BB. Characterization of a newly established human bone marrow endothelial cell line distinct adhesive properties for hematopoietic progenitors compared with human umbilical vein endothelial cells. Lab Invest 1997 76 25-36. [Pg.249]

TIRFM was used for time-lapse observations of initial cell adhesion to SAMs with different surface functionalities (Fig. 2). After 10 min of plating a suspension of human umbilical vein endothelial cells (HUVECs), a few bright spots were observed on SAMs with COOH and NH2 functionalities this indicated cell adherence. The number of bright spots increased and the spot areas enlarged with incubation time, indicating that HUVECs adhered and spread well on COOH-SAM and NH2-SAM surfaces. Quantitative analysis of the number of adherent cells and cell adhesion areas... [Pg.172]


See other pages where Human umbilical endothelial cells is mentioned: [Pg.354]    [Pg.341]    [Pg.15]    [Pg.105]    [Pg.407]    [Pg.538]    [Pg.354]    [Pg.341]    [Pg.15]    [Pg.105]    [Pg.407]    [Pg.538]    [Pg.240]    [Pg.27]    [Pg.345]    [Pg.367]    [Pg.92]    [Pg.64]    [Pg.84]    [Pg.38]    [Pg.1449]    [Pg.502]    [Pg.36]    [Pg.248]    [Pg.72]    [Pg.81]    [Pg.93]    [Pg.215]    [Pg.5]    [Pg.514]    [Pg.31]   


SEARCH



Endothelial

Endothelial cells

Endothelialization

Human umbilical cord endothelial cells

Human umbilical vein endothelial cells

Human umbilical vein endothelial cells HUVEC)

Human umbilical vein endothelial cells HUVECs)

Umbilicals

© 2024 chempedia.info