Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

BASF acetic acid process

In this connection the reduction of acetic acid to ethanol by Humphreys Glasgow, Davy McKee and BASF must be quoted as an attractive route to ethanol. This route combines the high selectivity of the Monsanto acetic acid process with a hydrogenation step. [Pg.6]

Mankind has produced acetic acid for many thousand years but the traditional and green fermentation methods cannot provide the large amounts of acetic acid that are required by today s society. As early as 1960 a 100% atom efficient cobalt-catalyzed industrial synthesis of acetic acid was introduced by BASF, shortly afterwards followed by the Monsanto rhodium-catalyzed low-pressure acetic acid process (Scheme 5.36) the name explains one of the advantages of the rhodium-catalyzed process over the cobalt-catalyzed one [61, 67]. These processes are rather similar and consist of two catalytic cycles. An activation of methanol as methyl iodide, which is catalytic, since the HI is recaptured by hydrolysis of acetyl iodide to the final product after its release from the transition metal catalyst, starts the process. The transition metal catalyst reacts with methyl iodide in an oxidative addition, then catalyzes the carbonylation via a migration of the methyl group, the "insertion reaction". Subsequent reductive elimination releases the acetyl iodide. While both processes are, on paper, 100%... [Pg.246]

The low-pressure acetic acid process was developed by Monsanto in the late 1960s and proved successful with commercialization of a plant producing 140 X 10 metric tons per year in 1970 at the Texas City (TX, USA) site [21]. The development of this technology occurred after the commercial implementation by BASF of the cobalt-catalyzed high-pressure methanol carbonylation process [22]. Both carbonylation processes were developed to utilize carbon monoxide and methanol as alternative raw materials, derived from synthesis gas, to compete with the ethylene-based acetaldehyde oxidation and saturated hydrocarbon oxidation processes (cf. Sections 2.4.1 and 2.8.1.1). Once the Monsanto process was commercialized, the cobalt-catalyzed process became noncom-... [Pg.106]

Chemistry of the BASF High Pressure Acetic Acid Process. The chemistry for the BASF high pressure process is shown in Eqs. (14)-(19). The reaction takes place in the gas phase at 250°C (482 F) and 680 bars (10,000 psig). [Pg.237]

The production of another important chemical and polymer intermediate, acetic acid, was revolutionized by the Wacker process that was introduced in 1960. It was a simple, high yield process for converting ethylene to acetaldehyde, which replaced the older process based on ethanol and acetylene. In the Wacker reaction, the palladium catalyst is reduced and then reoxidized. Ethylene reacts with water and palladium chloride to produce acetaldehyde and palladium metal. The palladium metal is reoxidized by reaction with cupric chloride, which is regenerated by reaction with o gen and hydrochloric acid. In 1968, BASF commercialized an acetic acid process based on the reaction of carbon monoxide and methanol, using carbonyl cobalt promoted with an iodide ion (74). Two years later, however, Monsanto scored a major success with its rhodium salt catalyst with methyl iodide promoter. Developed by James F. Roth, this new catalyst allowed operation at much milder conditions (180°C, 30-40 atm) and demonstrated high selectivity for acetic acid (75). [Pg.1039]

The representative carbonylations with rhodium catalysts is the Monsanto acetic acid process which started in 1970 with a production amount of three million pounds per year [82-91]. In this carbonylation, the 0x0 process of the Reppe reaction is carried out at 250-270°C, 200-300atm with nickel catalysts, and the BASF process is carried out at 210°C, 530atm with a Co/I catalyst. However, the Monsanto acetic acid process shown in eq. (18.37) is carried out under mild reaction conditions in a high selectivity of acetic acid with rhodium catalyst. The catalyst is RhCl3 3H20 and the active species is considered to be [Rh(CO)2l2] ... [Pg.403]

The acetic acid process was developed at BASF in Ludwigshafen to plant-scale application [543, 1007, 1008, 1012]. It operates with cobalt/ iodine as catalyst and with addition of water at about 250 °C and 750 atm in the carbonylation reactor [1012]. The greatest difficulty in the development was presented by the corrosiveness of the reaction mixture because special steels as well as platinum, titanium and tantalum linings corrode. The problem was solved by the use of Hastelloy C (Ni, Mo, Cr) [585,1007, 1008, 1012] and the somewhat less stable Hastelloy B (Ni, Mo, Cr) [585]. [Pg.121]

This process may be competitive with butane oxidation (see Hydrocarbon oxidation) which produces a spectmm of products (138), but neither process is competitive with the process from synthesis gas practiced by Monsanto (139) and BASF (140) which have been used in 90% of the new acetic acid capacity added since 1975. [Pg.374]

The carbonylation of methanol is currently one of the major routes for acetic acid production. The basic liquid-phase process developed by BASF uses a cobalt catalyst at 250°C and a high pressure of about 70... [Pg.154]

Examples for necessary process improvements through catalyst research are the development of one-step processes for a number of bulk products like acetaldehyde and acetic acid (from ethane), phenol (from benzene), acrolein (from propane), or allyl alcohol (from acrolein). For example, allyl alcohol, a chemical which is used in the production of plasticizers, flame resistors and fungicides, can be manufactured via gas-phase acetoxylation of propene in the Hoechst [1] or Bayer process [2], isomerization of propene oxide (BASF-Wyandotte), or by technologies involving the alkaline hydrolysis of allyl chloride (Dow and Shell) thereby producing stoichiometric amounts of unavoidable by-products. However, if there is a catalyst... [Pg.167]

Meanwhile, Wacker Chemie developed the palladium-copper-catalyzed oxidative hydration of ethylene to acetaldehyde. In 1965 BASF described a high-pressure process for the carbonylation of methanol to acetic acid using an iodide-promoted cobalt catalyst (/, 2), and then in 1968, Paulik and Roth of Monsanto Company announced the discovery of a low-pressure carbonylation of methanol using an iodide-promoted rhodium or iridium catalyst (J). In 1970 Monsanto started up a large plant based on the rhodium catalyst. [Pg.256]

ENSOL A combined process for converting syngas to methanol and then to ethanol. Acetic acid is an intermediate. Developed by Humphries Glasgow, in conjunction with BASF and Monsanto. [Pg.100]

It is now nearly 40 years since the introduction by Monsanto of a rhodium-catalysed process for the production of acetic acid by carbonylation of methanol [1]. The so-called Monsanto process became the dominant method for manufacture of acetic acid and is one of the most successful examples of the commercial application of homogeneous catalysis. The rhodium-catalysed process was preceded by a cobalt-based system developed by BASF [2,3], which suffered from significantly lower selectivity and the necessity for much harsher conditions of temperature and pressure. Although the rhodium-catalysed system has much better activity and selectivity, the search has continued in recent years for new catalysts which improve efficiency even further. The strategies employed have involved either modifications to the rhodium-based system or the replacement of rhodium by another metal, in particular iridium. This chapter will describe some of the important recent advances in both rhodium- and iridium-catalysed methanol carbonylation. Particular emphasis will be placed on the fundamental organometallic chemistry and mechanistic understanding of these processes. [Pg.187]

Other methods for the preparation of acetic acid are partial oxidation of butane, oxidation of ethanal -obtained from Wacker oxidation of ethene-, biooxidation of ethanol for food applications, and we may add the same carbonylation reaction carried out with a cobalt catalyst or an iridium catalyst. The rhodium and iridium catalysts have several distinct advantages over the cobalt catalyst they are much fester and fer more selective. In process terms the higher rate is translated into much lower pressures (the cobalt catalyst is operated by BASF at pressures of 700 bar). For years now the Monsanto process (now owned by BP) has been the most attractive route for the preparation of acetic acid, but in recent years the iridium-based CATTVA process, developed by BP, has come on stream. [Pg.109]

Methanol process. BASF introduced high-pressure technology way back in I960 to make acetic acid out of methanol and carbon monoxide instead of ethylene. Monsanto subsequently improved the process by catalysis, using an iodide-promoted rhodium catalyst. This permits operations at much lower pressures and temperatures. The methanol and carbon monoxide, of course, come from a synthesis gas plant. [Pg.259]

The concept that acetic acid can be prepared by carbonylation originated in use of routine acids. Carbonylation of methanol was first practiced in a high temperature and pressure process using boron trifluoride or phosphoric acid. A carbon monoxide pressure of 10,000 psi at 300 C was needed for the reaction (10). Metal salts came to replace acids as carbonylation catalysts. Carbonylation of methanol using a metal carbonyl catalyst was first discovered by Reppe and practised later by BASF. However, the process again required high pressure, 7500-10,000 psi, and the selectivity was low (11-14). [Pg.62]

BASF operates a commercial process with a Co-1 catalyst at 210 C and 10000 psig (JU). The main product is acetic acid with rates and selectivities of 1-4 M/hr and 90-93. In the late 1960s, Monsanto developed a Rh-I catalyst that operates at significantly lower pressure 18). In their process, the reaction is carried out at 180-200 C and 500 psig with acetic acid rates and selec-uivities of 10-30 M/hr and 95-99%. [Pg.128]

Acetic Acid. Carbonylation of methanol is the most important reaction in the production of acetic acid.189-192 BASF developed a process applying C0I2 in the liquid phase under extreme reaction conditions (250°C, 650 atm).122 193 The Monsanto low-pressure process, in contrast, uses a more active catalyst combining a rhodium compound, a phosphine, and an iodine compound (in the form of HI, Mel, or T2).122 194—196 Methanol diluted with water to suppress the formation of methyl acetate is reacted under mild conditions (150-200°C, 33-65 atm) to produce acetic acid with 99% selectivity at 100% conversion. [Pg.386]

As mentioned in the previous section, the carbonylation of methanol to acetic acid is an important industrial process. Whereas the [Co2(CO)s]-catalyzed, iodide-promoted reaction developed by BASF requires pressures of the order of 50 MPa, the Monsanto rhodium-catalyzed synthesis, which is also iodide promoted and which was discovered by Roth and co-workers, can be operated even at normal pressure, though somewhat higher pressures are used in the production units.4,1-413 The rhodium-catalyzed process gives a methanol conversion to acetic acid of 99%, against 90% for the cobalt reaction. The mechanism of the Monsanto process has been studied by Forster.414 The anionic complex m-[RhI2(CO)2]- (95) initiates the catalytic cycle, which is shown in Scheme 26. [Pg.272]

In this chapter we discuss the mechanistic and other details of a few industrial carbonylation processes. These are carbonylation of methanol to acetic acid, methyl acetate to acetic anhydride, propyne to methyl methacrylate, and benzyl chloride to phenyl acetic acid. Both Monsanto and BASF manufacture acetic acid by methanol carbonylation, Reaction 4.1. The BASF process is older than the Monsanto process. The catalysts and the reaction conditions for the two processes are also different and are compared in the next section. Carbonylation of methyl acetate to acetic anhydride, according to reaction 4.2, is a successful industrial process that has been developed by Eastman Kodak. The carbonylation of propyne (methyl acetylene) in methanol to give methyl methacrylate has recently been commercialized by Shell. The Montedison carbonylation process for the manufacture of phenyl acetic acid from benzyl chloride is noteworthy for the clever combination of phase-transfer and organometallic catalyses. Hoechst has recently reported a novel carbonylation process for the drug ibuprofen. [Pg.55]

A block diagram of the Monsanto process for acetic acid production is shown in Fig. 4.13. The process flow sheet is simple since the reaction conditions are mild (180°C/30-40 bar) when compared to the BASF process (250°C/700 bar). More than 40% of world s acetic acid is made by the Monsanto process. One of the problems with this process is the continuous loss of iodine. A block diagram of the Eastman process for acetic anhydride production is shown in Fig. 4.14. The process generates minimum waste, and all process tars are destroyed to recover iodine and rhodium. [Pg.77]

Originally, acetic acid was produced by fermentation this is still the major process for the production of vinegar. Modern production is by acetaldehyde oxidation, liquid phase hydrocarbon oxidation and preferentially by methanol carbonylation. The latter process is to be preferred because of the low raw material and energy costs. As early as 1913 BASF described the carbonylation of methanol at high temperature and pressure ... [Pg.15]

In the BASF process the 1,2-diacetate is the substrate for the hydroformylation step. It can be prepared either directly via oxidative acetoxylation of butadiene using a selenium catalyst or via PtCl4-catalyzed isomerization of the 1,4-diacetate (see above). The latter reaction affords the 1,2-diacetate in 95% yield. The hydroformylation step is carried out with a rhodium catalyst without phosphine ligands since the branched aldehyde is the desired product (phosphine ligands promote the formation of linear aldehydes). Relatively high pressures and temperatures are used and the desired branched aldehyde predominates. The product mixture is then treated with sodium acetate in acetic acid to effect selective elimination of acetic acid from the branched aldehyde, giving the desired C5 aldehyde. [Pg.65]

The carbonylation of methanol to acetic acid and methyl acetate, and the carbonylation of the latter to acetic anhydride, was found by W. Reppe at BASF in the 1940s, using iodide-promoted cobalt salts as catalyst precursors. This process required very high pressure (600 bar) as well as high temperatures (230°C) and gave ca. 90% selectivity for acetic acid. [Pg.1259]

A cobalt/iodide catalyzed process to make acetic acid from methanol, introduced by BASF around 1960, grew out of the carbonylation studies by... [Pg.116]

The production of carboxylic acids via carbonylation catalysis is the second most important industrial homogeneous group of processes. Reppe developed most of the basic carbonylation chemistry in the 1930s and 1940s. The first commercial carbonylation process was the stoichiometric Ni(CO)4-based hydroxycarbonylation of acetylene to give acrylic acid (see Section 3.5 for details). This discovery has since evolved into a trae Ni-catalyzed process, used mainly by BASF. The introduction of rhodium catalysts in the 1970s revolutionized carboxylic acid production, particularly for acetic acid, much in the same way that Rh/PPhs catalysts changed the importance of hydroformylation catalysis. [Pg.676]

In this problem, we will determine the degrees of freedom of a process circuit conqjosed of several process units by examining a methanol-synthesis process. Methanol was first synthesized from carbon monoxide and hydrogen on a commercial scale in 1923 by Badische Anilindund Soda-Fabrik (BASF) in Germany [25]. Methanol is an important basic bulk chemical used in the synthesis of formaldehyde and acetic acid [28] and it has been proposed as an automobile fuel and fixel additive [26]. Methanol has also been proposed as a substrate to produce a bacterium suitable as a protein source (single-cell protein). The bacterium would be a soy meal and fishmeal substitute for animal and poultry feeds [27]. If these applications should ever develop, the demand for methanol will increase considerably. [Pg.138]

Structure 4 is an intermediate for manufaeturing vitamin A (Scheme 2). The annual demand for vitamin A is about 3000 tons. Major producers are BASF, Hoffmann-La Roche and Rhone-Poulenc Animal Nutrition [55]. At an early stage in the synthesis BASF and Hoffmann-La Roche are using a hydroformylation step to synthesize 4 starting from l,2-diacetoxy-3-butene (5) and 1,4-di-aeetoxy-2-butene (6), respectively [56, 57]. The selectivity toward the branched product in the BASF process is achieved by using an unmodified rhodium carbonyl catalyst at a high reaction temperature. The symmetry of 6 in La Roche s process does not lead to regioselectivity problems. Elimination of acetic acid and isomerization of the exo double bond (La Roche) yields the final product 4 in both processes. [Pg.40]


See other pages where BASF acetic acid process is mentioned: [Pg.676]    [Pg.675]    [Pg.105]    [Pg.67]    [Pg.196]    [Pg.122]    [Pg.67]    [Pg.70]   
See also in sourсe #XX -- [ Pg.793 ]




SEARCH



Acetic acid process

Acetic processing

Acid process

BASF

BASF process

© 2024 chempedia.info