Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Higher pressure

To illustrate calculations for a binary system containing a supercritical, condensable component. Figure 12 shows isobaric equilibria for ethane-n-heptane. Using the virial equation for vapor-phase fugacity coefficients, and the UNIQUAC equation for liquid-phase activity coefficients, calculated results give an excellent representation of the data of Kay (1938). In this case,the total pressure is not large and therefore, the mixture is at all times remote from critical conditions. For this binary system, the particular method of calculation used here would not be successful at appreciably higher pressures. [Pg.59]

If refrigeration is required, consider higher pressure process conditions if this allows a less hazardous refrigerant to be used. [Pg.271]

If air (or oxygen) and steam are both passed through a high-temperature bed of coal or coke these reactions can be balanced, thus controlling the bed temperature and the fusion of the ash. In the higher pressure Lurgi process the gas obtained is high in methane, formed in reactions such as... [Pg.187]

An important safety feature on every modern rig is the blowout preventer (BOP). As discussed earlier on, one of the purposes of the drilling mud is to provide a hydrostatic head of fluid to counterbalance the pore pressure of fluids in permeable formations. However, for a variety of reasons (see section 3.6 Drilling Problems ) the well may kick , i.e. formation fluids may enter the wellbore, upsetting the balance of the system, pushing mud out of the hole, and exposing the upper part of the hole and equipment to the higher pressures of the deep subsurface. If left uncontrolled, this can lead to a blowout, a situation where formation fluids flow to the surface in an uncontrolled manner. [Pg.40]

Gas processing facilities generally work best at between 10 and 100 bar. At low pressure, vessels have to be large to operate effectively, whereas at higher pressures facilities can be smaller but vessel walls and piping systems must be thicker. Optimum recovery of heavy hydrocarbons is achieved between 20 bar and 40 bar. Long distance pipeline pressures may reach 150 bar and reinjection pressure can be as high as 700 bar. The gas process line will reflect gas quality and pressure as well as delivery specifications. [Pg.249]

The three general states of monolayers are illustrated in the pressure-area isotherm in Fig. IV-16. A low-pressure gas phase, G, condenses to a liquid phase termed the /i uid-expanded (LE or L ) phase by Adam [183] and Harkins [9]. One or more of several more dense, liquid-condensed phase (LC) exist at higher pressures and lower temperatures. A solid phase (S) exists at high pressures and densities. We briefly describe these phases and their characteristic features and transitions several useful articles provide a more detailed description [184-187]. [Pg.131]

The adsorption isotherms are often Langmuirian in type (under conditions such that multilayer formation is not likely), and in the case of zeolites, both n and b vary with the cation present. At higher pressures, capillary condensation typically occurs, as discussed in the next section. Some N2 isotherms for M41S materials are shown in Fig. XVII-27 they are Langmuirian below P/P of about 0.2. In the case of a microporous carbon (prepared by carbonizing olive pits), the isotherms for He at 4.2 K and for N2 at 77 K were similar and Langmuirlike up to P/P near unity, but were fit to a modified Dubninin-Radushkevich (DR) equation (see Eq. XVII-75) to estimate micropore sizes around 40 A [186]. [Pg.663]

Figure A2.1.7 shows schematically the variation o B = B with temperature. It starts strongly negative (tiieoretically at minus infinity for zero temperature, but of course iimneasiirable) and decreases in magnitude until it changes sign at the Boyle temperature (B = 0, where the gas is more nearly ideal to higher pressures). The slope dB/dT remains... Figure A2.1.7 shows schematically the variation o B = B with temperature. It starts strongly negative (tiieoretically at minus infinity for zero temperature, but of course iimneasiirable) and decreases in magnitude until it changes sign at the Boyle temperature (B = 0, where the gas is more nearly ideal to higher pressures). The slope dB/dT remains...
Once the above restrictions on isotope, solubility, chemical lability and paramagnetism are met, then a very wide range of samples can be investigated. Gases can be studied, especially at higher pressures. Solutions for... [Pg.1439]

Most electronic valence transitions shift to longer wavelengths at higher pressures drat is, the gap between the highest occupied orbital and lowest unoccupied orbital tends to decrease upon compression. The rates of shift usually are larger (1) for pure materials than for solutes in a solvent and (2) for stronger (more allowed) transitions. However, these correlations are not quantitative, and many transitions shift in the opposite... [Pg.1961]

In the higher pressure sub-region, which may be extended to relative pressure up to 01 to 0-2, the enhancement of the interaction energy and of the enthalpy of adsorption is relatively small, and the increased adsorption is now the result of a cooperative effect. The nature of this secondary process may be appreciated from the simplified model of a slit in Fig. 4.33. Once a monolayer has been formed on the walls, then if molecules (1) and (2) happen to condense opposite one another, the probability that (3) will condense is increased. The increased residence time of (1), (2) and (3) will promote the condensation of (4) and of still further molecules. Because of the cooperative nature of the mechanism, the separate stages occur in such rapid succession that in effect they constitute a single process. The model is necessarily very crude and the details for any particular pore will depend on the pore geometry. [Pg.242]

Still under vacuum but at higher pressure (typically KT mbar), the initially formed ions collide with neutral molecules to give dilferent kinds of ions before they are injected into the analyzer. As an example, at low pressure, methane gas (CH4) is ionized to give molecular ions (CH4 ) but, at higher pressures, these ions collide with other CH4 molecules to give carbonium ions (CH5+). [Pg.383]

Because of the relatively high population of the u" = 0 level the v" = 0 progression is likely to be prominent in the absorption spectrum. In emission the relative populations of the i/ levels depend on the method of excitation. In a low-pressure discharge, in which there are not many collisions to provide a channel for vibrational deactivation, the populations may be somewhat random. However, higher pressure may result in most of the molecules being in the v = 0 state and the v = 0 progression being prominent. [Pg.245]

Table 13 can be used as a rough guide for scmbber collection in regard to minimum particle size collected at 85% efficiency. In some cases, a higher collection efficiency can be achieved on finer particles under a higher pressure drop. For many scmbbers the particle penetration can be represented by an exponential equation of the form (271—274)... [Pg.408]


See other pages where Higher pressure is mentioned: [Pg.20]    [Pg.141]    [Pg.276]    [Pg.384]    [Pg.408]    [Pg.412]    [Pg.451]    [Pg.668]    [Pg.358]    [Pg.856]    [Pg.1874]    [Pg.1955]    [Pg.1957]    [Pg.1957]    [Pg.1957]    [Pg.1959]    [Pg.1960]    [Pg.1961]    [Pg.140]    [Pg.115]    [Pg.456]    [Pg.111]    [Pg.152]    [Pg.235]    [Pg.1]    [Pg.5]    [Pg.373]    [Pg.376]    [Pg.376]    [Pg.652]    [Pg.658]    [Pg.39]    [Pg.207]    [Pg.388]    [Pg.397]    [Pg.406]    [Pg.407]   


SEARCH



Data at higher pressures

Second and third limits (higher pressures)

Slow reaction (higher pressures)

© 2024 chempedia.info