Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selenium catalysts

Radical epoxidation. In the presence of this radical cation, iodosylbcnzcnc can effect epoxidation of stilbene, but only in low yield because of decomposition of the catalyst. Selenium dioxide (Se02) is a suitable oxidant for this catalyzed epoxidation, but suffers from low solubility in CH2CI2 at 0°. The most useful... [Pg.391]

P., Fiechter, S., Bron, M., and Tributsch, H. (2006) Oxygen reduction at carbon supported ruthenium-sdenium catalysts selenium as promoter and stabilizer of catalytic activity. J. Power Sources, 155 (1), 47-51. [Pg.435]

Digestion. 20-25 mg. of the substance whose nitrogen content is to be estimated are weighed out in a stoppered weighing-tube and then transferred to the flask L that has been previously dried in an oven at izo C. With care, the substance may be transferred directly into the bulb of the flask without any adhering to the sides. If any material sticks on the way down, the flask should be tapped gently to cause the substance to fall to the bottom. 2 G. of the catalyst mixture (32 g. of potassium sulphate, 5 g. of mercury sulphate and ig. of selenium powder, well mixed) are added and 3 ml. of A.R. cone, sulphuric acid are measured out carefully and poured into the digestion... [Pg.493]

Attempts have been made to develop methods for the production of aromatic isocyanates without the use of phosgene. None of these processes is currently in commercial use. Processes based on the reaction of carbon monoxide with aromatic nitro compounds have been examined extensively (23,27,76). The reductive carbonylation of 2,4-dinitrotoluene [121 -14-2] to toluene 2,4-diaLkylcarbamates is reported to occur in high yield at reaction temperatures of 140—180°C under 6900 kPa (1000 psi) of carbon monoxide. The resultant carbamate product distribution is noted to be a strong function of the alcohol used. Mitsui-Toatsu and Arco have disclosed a two-step reductive carbonylation process based on a cost effective selenium catalyst (22,23). [Pg.454]

Although gravimetric methods have been used traditionally for the determination of large amounts of tellurium, more accurate and convenient volumetric methods are favored. The oxidation of teUurium(IV) by ceric sulfate in hot sulfuric acid solution in the presence of chromic ion as catalyst affords a convenient volumetric method for the determination of tellurium (32). Selenium(IV) does not interfere if the sulfuric acid is less than 2 N in concentration. Excess ceric sulfate is added, the excess being titrated with ferrous ammonium sulfate using o-phenanthroline ferrous—sulfate as indicator. The ceric sulfate method is best appHed in tellurium-rich materials such as refined tellurium or tellurium compounds. [Pg.388]

EDA, when heated with carbon dioxide under pressure (57), or treated with urea (58), or ethylene carbonate [96-49-1] (59), or CO and oxygen using a selenium catalyst (60), produces ethyleneurea. [Pg.44]

Dehydrogenation of A -imidazolines (294 Z = NR) gives imidazoles, but requires quite high temperatures and a catalyst such as nickel or platinum. Alternatively, hydrogen acceptors such as sulfur or selenium can be used (70AHC(12)103). [Pg.78]

A route to phenol has been developed starting from cyclohexane, which is first oxidised to a mixture of cyclohexanol and cyclohexanone. In one process the oxidation is carried out in the liquid phase using cobalt naphthenate as catalyst. The cyclohexanone present may be converted to cyclohexanol, in this case the desired intermediate, by catalytic hydrogenation. The cyclohexanol is converted to phenol by a catalytic process using selenium or with palladium on charcoal. The hydrogen produced in this process may be used in the conversion of cyclohexanone to cyclohexanol. It also may be used in the conversion of benzene to cyclohexane in processes where benzene is used as the precursor of the cyclohexane. [Pg.637]

Estr-5(10)-en-3-ones also react with methanol to give dimethyl ketals. Weak acid catalysts such as malonic and oxalic acid or selenium dioxide, which are unable to promote conjugation of the double bond, are conveniently used. ... [Pg.389]

Selective ketalization at C-3 in the presence of a 20-ketone is achieved by the selenium dioxide procedure, at room temperature with " or without an additional acid catalyst. [Pg.389]

Thiols add to alkenes under photochemical conditions to form thioethers, and the reaction can be done intramolecularly to give cyclic thioethers. Thiols also add to alkynes and with a palladium catalyst, vinyl sulfides can be formed. " Selenium compounds (RSeH) add in a similar manner. ... [Pg.999]

Nishibayashi Y, Uemura S (2000) Selenium Compounds as Ligands and Catalysts. 208 235-255... [Pg.236]

The preparation of Pans-1,2-cyclohexanediol by oxidation of cyclohexene with peroxyformic acid and subsequent hydrolysis of the diol monoformate has been described, and other methods for the preparation of both cis- and trans-l,2-cyclohexanediols were cited. Subsequently the trans diol has been prepared by oxidation of cyclohexene with various peroxy acids, with hydrogen peroxide and selenium dioxide, and with iodine and silver acetate by the Prevost reaction. Alternative methods for preparing the trans isomer are hydroboration of various enol derivatives of cyclohexanone and reduction of Pans-2-cyclohexen-l-ol epoxide with lithium aluminum hydride. cis-1,2-Cyclohexanediol has been prepared by cis hydroxylation of cyclohexene with various reagents or catalysts derived from osmium tetroxide, by solvolysis of Pans-2-halocyclohexanol esters in a manner similar to the Woodward-Prevost reaction, by reduction of cis-2-cyclohexen-l-ol epoxide with lithium aluminum hydride, and by oxymercuration of 2-cyclohexen-l-ol with mercury(II) trifluoro-acetate in the presence of ehloral and subsequent reduction. ... [Pg.88]

Perspectives for fabrication of improved oxygen electrodes at a low cost have been offered by non-noble, transition metal catalysts, although their intrinsic catalytic activity and stability are lower in comparison with those of Pt and Pt-alloys. The vast majority of these materials comprise (1) macrocyclic metal transition complexes of the N4-type having Fe or Co as the central metal ion, i.e., porphyrins, phthalocyanines, and tetraazaannulenes [6-8] (2) transition metal carbides, nitrides, and oxides (e.g., FeCjc, TaOjcNy, MnOx) and (3) transition metal chalcogenide cluster compounds based on Chevrel phases, and Ru-based cluster/amorphous systems that contain chalcogen elements, mostly selenium. [Pg.310]

The different classes of Ru-based catalysts, including crystalline Chevrel-phase chalcogenides, nanostructured Ru, and Ru-Se clusters, and also Ru-N chelate compounds (RuNj), have been reviewed recently by Lee and Popov [29] in terms of the activity and selectivity toward the four-electron oxygen reduction to water. The conclusion was drawn that selenium is a critical element controlling the catalytic properties of Ru clusters as it directly modifies the electronic structure of the catalytic reaction center and increases the resistance to electrochemical oxidation of interfacial Ru atoms in acidic environments. [Pg.316]


See other pages where Selenium catalysts is mentioned: [Pg.586]    [Pg.297]    [Pg.390]    [Pg.586]    [Pg.297]    [Pg.390]    [Pg.127]    [Pg.492]    [Pg.535]    [Pg.358]    [Pg.424]    [Pg.326]    [Pg.332]    [Pg.337]    [Pg.292]    [Pg.43]    [Pg.254]    [Pg.505]    [Pg.727]    [Pg.752]    [Pg.297]    [Pg.80]    [Pg.86]    [Pg.145]    [Pg.221]    [Pg.221]    [Pg.820]    [Pg.914]    [Pg.174]    [Pg.318]    [Pg.254]    [Pg.6]    [Pg.114]    [Pg.173]    [Pg.314]   
See also in sourсe #XX -- [ Pg.186 ]

See also in sourсe #XX -- [ Pg.186 ]




SEARCH



© 2024 chempedia.info