Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High Pressure Processes

Linde process A high-pressure process for the production of liquid oxygen and nitrogen by compression to about 200 bar (20MN/m ) followed by refrigeration and fractionation in a double column. [Pg.240]

Fig,3. The results of UT of a section of the case of a high-pressure process column. [Pg.793]

Another example is the purification of a P-lactam antibiotic, where process-scale reversed-phase separations began to be used around 1983 when suitable, high pressure process-scale equipment became available. A reversed-phase microparticulate (55—105 p.m particle size) C g siUca column, with a mobile phase of aqueous methanol having 0.1 Af ammonium phosphate at pH 5.3, was able to fractionate out impurities not readily removed by hquid—hquid extraction (37). Optimization of the separation resulted in recovery of product at 93% purity and 95% yield. This type of separation differs markedly from protein purification in feed concentration ( i 50 200 g/L for cefonicid vs 1 to 10 g/L for protein), molecular weight of impurities (<5000 compared to 10,000—100,000 for proteins), and throughputs ( i l-2 mg/(g stationary phasemin) compared to 0.01—0.1 mg/(gmin) for proteins). [Pg.55]

In the high pressure process, a resia melt containing a chemical blowiag ageat is iajected iato an expandable mold under high pressure. Foaming begias as the mold cavity expands. This process produces stmctural foam products with very smooth surfaces siace the skin is formed before expansion takes place. [Pg.406]

High Pressure in the Chemical Industry. The use of high pressure in industry may be traced to early efforts to Hquefy the so-called permanent gases using a combination of pressure and low temperature. At about the same time the chemical industry was becoming involved in high pressure processes. The discovery of mauveine in 1856 led to the development of the synthetic dye industry which was well estabUshed, particularly in Germany, by the end of the century. Some of the intermediate compounds required for the production of dyes were produced, in autoclaves, at pressures of 5-8 MPa (725-1160 psi). [Pg.76]

In the Reclaimator, a high pressure extmder, fiber-free mbber is heated to 175—205°C with oils and other ingredients. High pressure and shear between the mbber mixture and the extmder barrel walls effectively devulcanize the mixture in one to three minutes. In the Lancaster-Banbury method, high temperature, pressure, and shear are appHed to the mbber in a batch process that is otherwise similar to the Reclaimator process. In another high pressure process, scrap mbber is devulcanized at 5.5—6.9 MPa (54—68 atm) for ca five minutes. The product is milled, baled, or pelletized as in other processes. [Pg.19]

Temperature, solvent ratio, and pressure each have an effect upon the spHt point or yield of the oil and asphalt components (Table 3). Contrary to straight reduction which is a high temperature and low pressure process, propane deasphalting is a low temperature and high pressure process. [Pg.362]

High pressure processes P > 150 atm) are catalyzed by copper chromite catalysts. The most widely used process, however, is the low pressure methanol process that is conducted at 503—523 K, 5—10 MPa (50—100 atm), space velocities of 20, 000-60,000 h , and H2-to-CO ratios of 3. The reaction is catalyzed by a copper—zinc oxide catalyst using promoters such as alumina (31,32). This catalyst is more easily poisoned than the older copper chromite catalysts and requites the use of sulfiir-free synthesis gas. [Pg.51]

Methanol Synthesis. Methanol has been manufactured on an industrial scale by the cataly2ed reaction of carbon monoxide and hydrogen since 1924. The high pressure processes, which utili2e 2inc oxide—chromium oxide catalysts, are operated above 20 MPa (200 atm) and temperatures of 300—400°C. The catalyst contains approximately 72 wt % 2inc oxide, 22 wt % chromium (II) oxide, 1 wt % carbon, and 0.1 wt % chromium (VI) the balance is materials lost on heating. [Pg.199]

High Pressure Synthesis. Reaction at pressures of 10 to 20 MPa (100—200 atm) and temperatures ia the 400°C range is known as the high pressure process. [Pg.290]

Proce.s.s-side design pre.s.sure. The high-pressure process fluid is always in the tubes. Tube-side headers are relatively small as... [Pg.1081]

Branching can to some extent reduce the ability to crystallise. The frequent, but irregular, presence of side groups will interfere with the ability to pack. Branched polyethylenes, such as are made by high-pressure processes, are less crystalline and of lower density than less branched structures prepared using metal oxide catalysts. In extreme cases crystallisation could be almost completely inhibited. (Crystallisation in high-pressure polyethylenes is restricted more by the frequent short branches rather than by the occasional long branch.)... [Pg.65]

In September 1964 the Du Pont company announced materials that had characteristics of both thermoplastics and thermosetting materials. These materials, known as ionomers, are prepared by copolymerising ethylene with a small amount (1-10 % in the basic patent) of an unsaturated carboxylic acid such as acrylic acid using the high-pressure process. Such copolymers are then treated... [Pg.277]

Flue gas treatment (FGT) is more effective in reducing NO, emissions than are combustion controls, although at higher cost. FGT is also useful where combustion controls are not applicable. Pollution prevention measures, such as using a high-pressure process in nitric acid plants, is more cost-effective in controlling NO, emissions. FGT technologies have been primarily developed and are most widely used in Japan. The techniques can be classified as selective catalytic reduction, selective noncatalytic reduction, and adsorption. [Pg.28]

Give preference to high-pressure processes or absorption process in combination with catalytic reduction units. [Pg.67]

Firebox Overpressure - The firebox of a forced-draft furnace and boiler is designed to withstand the overpressure that can be generated by the fans with dampers in their closed position. This needs to be specially checked when both forced and induced-draft fans are provided to discharge combustion products through heat recovery facilities, since higher than normal fan pressures may be used to overcome pressure drop. In the case of high-pressure process furnaces, a tube rupture could also be the cause of firebox overpressure. [Pg.142]


See other pages where High Pressure Processes is mentioned: [Pg.791]    [Pg.243]    [Pg.295]    [Pg.381]    [Pg.483]    [Pg.495]    [Pg.495]    [Pg.534]    [Pg.783]    [Pg.233]    [Pg.457]    [Pg.406]    [Pg.217]    [Pg.76]    [Pg.275]    [Pg.275]    [Pg.41]    [Pg.41]    [Pg.42]    [Pg.42]    [Pg.367]    [Pg.368]    [Pg.371]    [Pg.232]    [Pg.316]    [Pg.209]    [Pg.167]    [Pg.348]    [Pg.74]    [Pg.206]    [Pg.208]    [Pg.460]    [Pg.461]    [Pg.20]   
See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.224 ]




SEARCH



High-pressure processing

Pressure process

Pressures processing

© 2024 chempedia.info