Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixtures of products

The usual base or acid catalyzed aldol addition or ester condensation reactions can only be applied as a useful synthetic reaction, if both carbonyl components are identical. Otherwise complicated mixtures of products are formed. If two different aldehydes or esters are to be combined, it is essential that one of the components is transformed quantitatively into an enol whereas the other component remains as a carbonyl compound in the reaction mixture. [Pg.55]

The most intriguing hydrocarbon of this molecular formula is named buUvalene, which is found in the mixture of products of the reaction given above. G. SchrOder (1963, 1964, 1967) synthesized it by a thermal dimerization presumably via diradicais of cyciooctatetraene and the photolytical cleavage of a benzene molecule from this dimer. The carbon-carbon bonds of buUvalene fluctuate extremely fast by thermal Cope rearrangements. 101/3 = 1,209,6(X) different combinations of the carbon atoms are possible. [Pg.332]

Reduction of 2.4-dimethyl-5-nitrothiazole with activated iron gives a product that after acetylation yields 25% 2.4-dimethyl-5-acetamido-thiazole (58). The reduction of 2-methyl 5-nitrothiazole is also reported (351 to give a mixture of products. The nitro group of 2-acetylhydrazino-5-nitrothiazole is reduced by TiCl in hydrochloric acid or by Zn in acetic acid (591. [Pg.16]

If the medium is sufficiently basic to generate the arabident anion 31. mixtures of products resulting from N-nng and N-exocyclic reactivity are observed. Here again steric effects can preferentially orient the whole reaction toward one of the two nitrogens. A general study clearly delineating the rules of behavior for 31 accordine to the nature of R. the... [Pg.39]

Methyl-5-aminothia2ole-4-carboxylic acid is diazotized with isoamyl nitrite in the presence of furan in 1.2-dichloroethane to give a mixture of products 163 (53%), 164 (33%). 165 (11%), and 166 (3%) (Scheme 104) (334). This reactivity experiment was carried out to examine the possibility of the occurrence of 4,5-dehydrothiazole (hetaryne). Hetaryne intermediates seem not to be involved as an intermediate in the reaction. The formation of 163 through 166 can be rationalized in terms of the intermediacy of 166a. [Pg.67]

The reactivity of sulfathiazoles has been reviewed (65). Methylation in alkaline solution with dimethyl sulfate gives only the ring methylated derivative (85). Mixtures of products are obtained with diazomethane as alkylating agent (see p. 37). Other alkyl halides in aqueous alkali lead also to ring-alkylated products (85. 251, 650. 669-671). [Pg.116]

The carbocation formed on ionization of 1 chloro 3 methyl 2 butene is the same allylic carbocation as the one formed on ionization of 3 chloro 3 methyl 1 butene and gives the same mixture of products... [Pg.394]

Polycyclic aromatic hydrocarbons undergo electrophilic aromatic substitution when treated with the same reagents that react with benzene In general polycyclic aromatic hydrocarbons are more reactive than benzene Most lack the symmetry of benzene how ever and mixtures of products may be formed even on monosubstitution Among poly cyclic aromatic hydrocarbons we will discuss only naphthalene and that only briefly Two sites are available for substitution m naphthalene C 1 and C 2 C 1 being normally the preferred site of electrophilic attack... [Pg.506]

In the presence of strong oxidizing agents at elevated temperatures oxidation of tertiary alcohols leads to cleavage of the various carbon-carbon bonds at the hydroxyl bearing carbon atom and a complex mixture of products results... [Pg.642]

Because alkylation of ammonia can lead to a complex mixture of products it is used to prepare primary amines only when the starting alkyl halide is not particularly expensive and the desired amine can be easily separated from the other components of the reaction mixture... [Pg.929]

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

Using only the phenyhnagnesium chloride without the MnCI catalyst results ia a mixture of products. This mixture iacludes the alcohol(s) resulting from the diaddition of the Grignard reagent to the carbonyl groups. Other catalysts, such as Fe(III) and Ni(II), have also been used to achieve similar results... [Pg.397]

Mixtures of products are frequentiy observed. Oxidation by peroxycarboxylic acids usually give similar products (22). Several chemical oxidants give good yields of specific oxidation products. Dimethyl sulfoxide in aqueous acid gives oxindoles (23). In methanol, MoO HMPA (hexamethylphosphoramide) gives 3-hydroxy-2-methoxyindolines (24). [Pg.86]

Generally, the sulfonation of naphthalene leads to a mixture of products. Naphthalene sulfonation at less than ca 100°C is kineticaHy controlled and produces predominandy 1-naphthalenesulfonic acid (4). Sulfonation of naphthalene at above ca 150°C provides thermodynamic control of the reaction and 2-naphthalenesulfonic acid as the main product. Reaction conditions for the sulfonation of naphthalene to yield desired products are given in Figure 1 alternative paths are possible. A Hst of naphthalenesulfonic acids and some of their properties is given in Table 1. [Pg.489]

The hydrolysis of phosphoms sulfides has been studied quantitatively. A number of products are formed (Table 6). Whereas phosphoms(V) sulfide reacts slowly with cold water, the reaction is more rapid upon heating, producing mainly hydrogen sulfide and orthophosphoric acid, H2PO4. At high pH, P4S Q hydroly2es to a mixture of products containing thiophosphates and sulfides. [Pg.363]

The principal reactions are reversible and a mixture of products and reactants is found in the cmde sulfate. High propylene pressure, high sulfuric acid concentration, and low temperature shift the reaction toward diisopropyl sulfate. However, the reaction rate slows as products are formed, and practical reactors operate by using excess sulfuric acid. As the water content in the sulfuric acid feed is increased, more of the hydrolysis reaction (Step 2) occurs in the main reactor. At water concentrations near 20%, diisopropyl sulfate is not found in the reaction mixture. However, efforts to separate the isopropyl alcohol from the sulfuric acid suggest that it may be partially present in an ionic form (56,57). [Pg.107]

The tautomeric character of the pyrazolones is also illustrated by the mixture of products isolated after certain reactions. Thus alkylation normally takes place at C, but on occasion it is accompanied by alkylation on O and N. Similar problems can arise during acylation and carbamoylation reactions, which also favor C. Pyrazolones react with aldehydes and ketones at to form a carbon—carbon double bond, eg (41). Coupling takes place when pyrazolones react with diazonium salts to produce azo compounds, eg (42). [Pg.312]

Thermal Stability. Dimethyl sulfoxide decomposes slowly at 189°C to a mixture of products that includes methanethiol, formaldehyde, water, bis(methylthio)methane, dimethyl disulfide, dimethyl sulfone, and dimethyl sulfide. The decomposition is accelerated by acids, glycols, or amides (30). This product mixture suggests a sequence in which DMSO initially undergoes a Pummerer reaction to give (methylthio)methano1, which is labile and reacts according to equations 1—3. Disproportionation (eq. 4) also occurs to a small extent ... [Pg.108]

When DMSO is mixed with concentrated hydrochloric acid, protonated DMSO is in equiUbtium with the chlorodimethylsiilfonium ion. Pummerer reactions and subsequent reaction of the initial products give a complex mixture of products including formaldehyde, bis(methylthio)methane, methanethiol, dimethyl disulfide, dimethyl sulfide, and others. [Pg.109]

The effect of pH and the piC of the thiol has been discussed. This reaction is not of great synthetic interest, primarily because it yields a mixture of products, but it is of commercial consequence. It is also appHcable ia polysulfide synthesis, where the presence of small amounts of thiols can cause significant problems for the stabiUty of the polysulfide (51). A similar reaction between thiols and sulfides has also been described (52). In this instance, the process is heterogenous and acid-cataly2ed. [Pg.13]

In practice, these cleavage reactions are difficult to control, and usually mixtures of products form, even with stoichiometric quantities of reagents. Selectivity improves at lower temperatures, higher dilutions, and in the presence of polar solvents, eg, pyridine. This method is not used to prepare the lower alkylated—arylated organotins outside the laboratory. [Pg.68]

Polymers of high VDC content are reactive toward strong bases to yield elimination products and toward nucleophiles to yield substitution products. Agents capable of functioning as both a base and a nucleophile react with these polymers to generate a mixture of products (119,133,134). [Pg.438]

The reactions of pyrroles with dienophiles generally follow two different pathways involving either a [4 + 2] cycloaddition or a Michael-type addition to a free a-position of the pyrrole ring. Pyrrole itself gives a complex mixture of products with maleic anhydride or maleic acid and with benzyne reacts to give 2-phenylpyrrole rather than a product of cycloaddition (Scheme 47). [Pg.65]

More definitive evidence for the formation of an oxirene intermediate or transition state was presented recently by Cormier 80TL2021), in an extension of his earlier work on diazo ketones 77TL2231). This approach was based on the realization that, in principle, the oxirene (87) could be generated from the diazo ketones (88) or (89) via the oxocarbenes 90 or 91) or from the alkyne (92 Scheme 91). If the carbenes (90) (from 88) and (91) (from 89) equilibrate through the oxirene (87), and if (87) is also the initial product of epoxidation of (92), then essentially the same mixture of products (hexenones and ketene-derived products) should be formed on decomposition of the diazo ketones and on oxidation of the alkyne this was the case. [Pg.123]

Exothermic processes, with cooling through heat transfer surfaces or cold shots. In use are sheU-and-tube reactors with smaU-diameter tubes, or towers with internal recirculation of gases, or multiple stages with intercoohng. Chlorination of methane and other hydrocarbons results in a mixture of products whose relative amounts... [Pg.2099]

Af HF, 0.1 MNaF, pH 5, THF, 25°, 2 days, 77% yield. In this substrate a mixture of products resulted from attempted cleavage of the t-bu-tyldimethylsilyl ether with tetra- -butylammonium fluoride, the reagent generally used. ... [Pg.161]

HBr, AcOH, 70, 8 h, 45-50% yield. During the synthesis of L-2-amino-3-oxalylaminopropionic acid, a neurotoxin, cleavage with Na/NH3 or [C oHg ] Na gave a complex mixture of products. [Pg.380]


See other pages where Mixtures of products is mentioned: [Pg.279]    [Pg.287]    [Pg.118]    [Pg.469]    [Pg.126]    [Pg.1250]    [Pg.232]    [Pg.125]    [Pg.184]    [Pg.561]    [Pg.548]    [Pg.494]    [Pg.199]    [Pg.209]    [Pg.5]    [Pg.83]    [Pg.289]    [Pg.70]    [Pg.150]    [Pg.93]    [Pg.175]    [Pg.53]    [Pg.18]    [Pg.328]   
See also in sourсe #XX -- [ Pg.4 , Pg.5 ]




SEARCH



Complex mixtures of natural products

Non-Equilibrium Plasma-Chemical Syngas Production from Mixtures of Methane with Carbon Dioxide

Other Drugs and Mixtures of Natural Products

Product mixtures

Work-Up of Ozonation Product Mixtures

© 2024 chempedia.info