Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyzed isomerizations

Acid-catalyzed isomerization reactions of alkanes as well as alkylation and condensation reactions are initiated by protolytic ionization. Available evidence indicates nonlinear but not necessarily triangular... [Pg.163]

The synthesis of cubane has been outlined on p. 78. Cuneiform cuneanes are formed by silver(l)-catalyzed isomerization of cubanes in almost quantitative yield. Rhodium(I), on the other hand, effects isomerization of cubane to a syn-tricyclooctadiene (L. Cassar, 1970). [Pg.332]

Spherical, pentagonal dodecahedrane is the thermodynamically most stable CjoHjo-polycycloalkane. It is the so-called CjjHjo stabilomer . It should therefore be available by thermod5mamically controlled, e.g. acid-catalyzed, isomerization of less stable C24H20-isomers. Experiments along this line, e.g. treatment of the basketene photo-dimer with Lewis... [Pg.334]

The enzyme catalyzed reactions that lead to geraniol and farnesol (as their pyrophosphate esters) are mechanistically related to the acid catalyzed dimerization of alkenes discussed m Section 6 21 The reaction of an allylic pyrophosphate or a carbo cation with a source of rr electrons is a recurring theme m terpene biosynthesis and is invoked to explain the origin of more complicated structural types Consider for exam pie the formation of cyclic monoterpenes Neryl pyrophosphate formed by an enzyme catalyzed isomerization of the E double bond m geranyl pyrophosphate has the proper geometry to form a six membered ring via intramolecular attack of the double bond on the allylic pyrophosphate unit... [Pg.1089]

Fum ric Acid. Eumaric acid [110-17-8] C H O, is unique in its low solubiUty in cold water and slow rate of solution, making it ideal for use in chilled biscuit leavening systems and for dry pudding mixes and beverage powders. It is also used for gelatin desserts, pie filling, fmit juices, and wine. Eumaric acid is produced by the acid-catalyzed isomerization of maleic acid (8,9) (see Maleic anhydride, maleic acid, and fumaric acid). [Pg.436]

Maleic anhydride and the two diacid isomers were first prepared in the 1830s (1) but commercial manufacture did not begin until a century later. In 1933 the National Aniline and Chemical Co., Inc., installed a process for maleic anhydride based on benzene oxidation using a vanadium oxide catalyst (2). Maleic acid was available commercially ia 1928 and fumaric acid production began in 1932 by acid-catalyzed isomerization of maleic acid. [Pg.447]

Uses ndReactions. a-Pinene (8) is useful for synthesizing a wide variety of terpenoids. Hydration to pine oil, acid-catalyzed isomerization to camphene, thermal isomerization to ocimene and aHoocimene, and polymerization to terpene resins are some of its direct uses. Manufacture of linalool, nerol, and geraniol has become an economically important use of a-pinene. [Pg.411]

Linalool can also be made from nerol and geraniol by the orthovanadate-catalyzed isomerization. Because linalool is lower boiling than nerol and geraniol, the isomerization can be mn under distillation conditions to remove the linalool overhead while continually adding nerol and geraniol to the distillation kettie for further isomerization (56). [Pg.421]

Work at Rhc ne-Poulenc has involved a different approach to retinal and is based on the paHadium-cataly2ed rearrangement of the mixed carbonate (41) to the aHenyl enal (42). Isomerization of the aHene (42) to the polyene (43) completes the constmction of the carbon framework. Acid-catalyzed isomerization yields retinal (5). A decided advantage of this route is that no by-products such as triphenylphosphine oxide or sodium phenylsulfinate are formed. However, significant yield improvements would be necessary for this process to compete with the current commercial syntheses (25—27) (Fig. 9). [Pg.99]

Increasingly, biochemical transformations are used to modify renewable resources into useful materials (see Microbial transformations). Fermentation (qv) to ethanol is the oldest of such conversions. Another example is the ceU-free enzyme catalyzed isomerization of glucose to fmctose for use as sweeteners (qv). The enzymatic hydrolysis of cellulose is a biochemical competitor for the acid catalyzed reaction. [Pg.450]

Dioxopiperazines have been converted into the corresponding dihydroxypyrazines by base catalyzed isomerization of the corresponding arylidene derivatives (Scheme 64) (70JCS(C)980), although this reaction appears to be limited to the synthesis of benzyl- or aryl-substituted benzylpyrazines. [Pg.187]

Although there is very little scope for reactions of the above types with 1,2-benzisoxazole derivatives, the quaternary salts such as 2-methyl-3-phenyl-l,2-benzisoxazolium salt underwent base-catalyzed isomerization to the 1,3-benzoxazine shown in Scheme 83. This reaction is analogous to the formation of (202) above (67AHC(8)277). [Pg.51]

Allylamines have been used as nitrogen protective groups. They can be removed by isomerization to the enamine (t-BuOK, DMSO) or by rhodium-catalyzed isomerization. ... [Pg.362]

The allyl group was used to protect the nitrogen in a /3-lactam synthesis, but was removed in a four-step sequence. Whether a transition-metal-catalyzed isomerization to the enamide followed by hydrolysis is an effective cleavage procedure remains to be tested and warrants further study. ... [Pg.397]

The first fraction (bp 30-40 C) contains decenes which are formed by palladium-catalyzed isomerization of l-decene (indicated by a broad signal at 6 5.2-5.5 in the H NMR spectrum). [Pg.10]

Extension of the above method to 3-methoxyestra-3,5(10)-dien-17-one 17-ethylene ketal (46) prepared by base-catalyzed isomerization of 3-methoxy-estra-2,5(10)-dien-17-one 17-ketal (42) with potassium t-butoxide in dimethyl sulfoxide gives the isomeric tropone A-homo-estra-l,4,5(10)-triene-3,17-dione... [Pg.369]

The base-catalyzed isomerization of N,N-dialkylallylamines (179) to a mixture of enamines consisting primarily of the cis isomer (180) has been reported 128). The assignments were based upon the magnitude of the... [Pg.94]

The rhodium-catalyzed isomerization can also be carried out with the chiral catalyst, Ru2Cl4(diop)3 (H2, 20-80°, 1-6 h, 47-90% yield). In this case, optically enriched enol ethers are obtained. ... [Pg.310]

Many carbamates have been used as protective groups. They are arranged in this chapter in order of increasing complexity of structure. The most useful compounds (not necessarily the simplest structures) are /-butyl (BOC), readily cleaved by acidic hydrolysis benzyl (Cbz or Z), cleaved by catalytic hydrogenol-ysis 2,4-dichlorobenzyl, stable to the acid-catalyzed hydrolysis of benzyl and /-butyl carbamates 2-(biphenylyl)isopropyl, cleaved more easily than /-butyl carbamate by dilute acetic acid 9-fluorenylmethyl, cleaved by /3-elimination with base isonicotinyl, cleaved by reduction with zinc in acetic acid 1-adamantyl, readily cleaved by trifluoroacetic acid and allyl, readily cleaved by Pd-catalyzed isomerization. [Pg.503]

Rhodium-catalyzed isomerization. Ru(cod)(cot) has been used to convert an allylamine into an enamine."... [Pg.574]

An interesting consequence of the base-catalyzed isomerization of unsatu-rated ketones described in Problem 22.37 is that 2-substituted 2-cyclopen tenones can be interconverted with 5-sub tituted 2-cyclopentenones. Propose a mechanism for this isomerization. [Pg.871]

Treatment of the minor product formed in the intramolecular aldol cyclization of 2,5-heptanedione (Problems 23.30 and 23.31) with aqueous NaOH converts it into the major product. Propose a mechanism to account for this base-catalyzed isomerization. [Pg.908]

The pronounced acidity of the bridgehead hydrogen atoms in 4 (R = H) facilitates the regio-selective introduction of electrophiles. Rearrangements of 4 (R = H, Me, CHO, C02Me) catalyzed by dicarbonyldichlororhodium(I) lead to 4-substituted 1-benzothiepins 5,10 except in the case of R = Me where a mixture (1 1.3) of 3- and 4-methyl-l-benzothiepin is obtained (total yield 98 %). In the case of the dimethyl-substituted derivative 8 (R1 = R2 = Me), however, the rhodium(I)-catalyzed isomerization reaction leads to the thiophene isomer. [Pg.83]

In contrast, the diphenyl derivative 44 (R1 = R2 = Ph) fails to ring expand, whereas the methyl derivative 44 (R1 = Me R2 = H) yields the a.xo-methylene compound 45 (63 %), which undergoes quantitative acid-catalyzed isomerization to 10-methyl-5/7-dibenz[6,/]azepine (46) in refluxing toluene. The mechanistic implications of these reactions have been discussed. [Pg.250]

Some examples of the boron trifluoride catalyzed isomerization of 5//-l-benzazepines to 3//-l-benzazepines have also been reported.241 242... [Pg.278]

Scheme 2.49 Palladium(0)-catalyzed isomerization of 2-dienylaziridines to 3-pyrrolines. Scheme 2.49 Palladium(0)-catalyzed isomerization of 2-dienylaziridines to 3-pyrrolines.
Palladium(O)-catalyzed isomerization of 2-dienylaziridines 201 to 3-pyrrolines 202 was reported in 1985 by Oshima, Nozaki, and coworkers (Scheme 2.49) [78]. This isomerization is in striking contrast to Ibuka s palladium-catalyzed isomerization of 2,3-trans-2-vinylaziridines to the corresponding 2,3-cis isomers (see Section 2.4.6) [29]. [Pg.60]

Scheme 2.59 Synthesis of L,L-type ( )-alkene dipeptide isosteres 243 through palladium(0)-catalyzed isomerization of vinylaziridines 240. Scheme 2.59 Synthesis of L,L-type ( )-alkene dipeptide isosteres 243 through palladium(0)-catalyzed isomerization of vinylaziridines 240.
Opposing reactions. Consider the kinetics of the N02-catalyzed isomerization of olefins. Derive the expression shown for kCV]. where KTC = k,mns/kCiS, in experiments starting only with m-olefin,11... [Pg.65]

A final, rather different example which fits in appropriately here, in that it involves hydrogen exchange, is the measurement of equilibrium and rate constants for the base-catalyzed isomerization of unsaturated sulfides, sulfoxides and sulfones193 ... [Pg.527]

The method used is described by Drysdale, Stevenson, and Sharkey.4 The methyl ester of butadienoic acid has not been described previously, but the free acid contaminated by 2-bu-tynoic acid has been prepared by Wotiz, Matthews, and Lieb 5 by carbonation of propargylmagncsium bromide. Ethyl butadienoate has been prepared by Eglinton, Jones, Mansfield, and Whiting by alkali-catalyzed isomerization of ethyl 3-butynoate prepared from 3-butynol by chromic acid oxidation and esterification. [Pg.72]

Metathesis of N-tosylated ene-amides and yne-amides has been less extensively investigated. An example of the RCM of ene-amides is a new indole synthesis developed by Nishida [79] metathesis precursor 96 (prepared by ruthenium-catalyzed isomerization of the corresponding allyl amide) is cy-clized to indole 97 in the presence of 56d (Eq. 13). [Pg.251]

Pure (A)-1 -chloropropene was obtained by careful distillation of a mixture of (E)- and ( )-l -chloropropene (available from Columbia Organic Chemicals Company Inc.) using a Nester-Faust Teflon annular spinning band column [(Z)-l-chloropropene has b.p. 33° (A)-l-chloropropene has b.p. 37°]. Small quantities of powdered sodium bicarbonate and hydroquinone (1,4-benzenediol) placed in the distillation flask inhibit acid-catalyzed isomerization and polymerization. Gas chromatographic analysis of the material used in these experiments on a 4-m., 15% l,2,3-tris(2-cyanoethoxy)propane (TCEP) on Chromosorb P column, operated at room temperature, typically indicated that it had isomeric purity >99.9%. (A)- 1-Chloropropene is stable for several months at room temperature, but it should be stored in a cool place. [Pg.107]


See other pages where Catalyzed isomerizations is mentioned: [Pg.102]    [Pg.195]    [Pg.3]    [Pg.504]    [Pg.249]    [Pg.44]    [Pg.206]    [Pg.832]    [Pg.249]    [Pg.1089]    [Pg.333]    [Pg.69]    [Pg.49]    [Pg.52]    [Pg.817]    [Pg.59]    [Pg.426]    [Pg.742]   


SEARCH



© 2024 chempedia.info