Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols fatty, separation

The process involves reacting the degummed oil with an excess of methyl alcohol in the presence of an alkaline catalyst such as sodium or potassium methoxide, reaction products between sodium or potassium hydroxide and methyl alcohol. The reaction is carried out at approximately 150°F under pressure of 20 psi and continues until trans-esterification is complete. Glycerol, free fatty acids and unreacted methyl alcohol are separated from the methyl ester product. The methyl ester is purified by removal of residual methyl alcohol and any other low-boiling-point compounds before its use as biodiesel fuel. From 7.3 lb of soybean oil, 1 gallon of biodiesel fuel can be produced. See FIGURE 12-5. [Pg.286]

The use of n-paraffins recovered include octane value enhancement of gasoline, solvents and raw materials for biodegradable detergents, fire retardants, plasticizers, alcohol, fatty acids, synthetic proteins, lube oil additives, and a-olefins. A detailed discussion on n-paraffin separation processes is available (1). [Pg.312]

Chesterfield, J. and I.D. Entwhistle Methods for the separation of cigarette smoke hydrocarbons 17th Tobacco Chemists Research Conference, Program Booklet and Abstracts, Vol. 17, Paper No. 24, 1963, pp. 17-18. Chibnall, A.C., S.H. Piper, A. Pollard, E.R Williams, and P. Sahai The constitution of the primary alcohols, fatty... [Pg.1287]

Today, natural detergent alcohols are prodnced using processes such as that developed by Davy Process Technology, depicted in Hgnie 1.9, which convert fatty acids into nonacidic intermediate methyl esters and hydrogenates these to alcohols, then separates C12-C14 and C16-C18 product streams. This vapor phase process has been licensed around the world in ten ester hydrogenation plants with a total installed capacity of 350,000 t/year of alcohols. These plants have virtnally no effluents small by-product streams are recycled and consumed within the process, thus they have minimal environmental impact... [Pg.9]

There are a number of ways in which TLC can be combined to advantage with GLC. The spots obtained from TLC may be eluted, concentrated, and then subjected to GLC analysis. This method has been used in the analyses of lipids, steroids, alcohols, fatty acids, esters, glycerides, hydrocarbons, essential oils, and many other natural and synthetic organic compounds. Methyl esters of fatty acids are first separated on silver-nitrate-impregnated silica gel... [Pg.374]

Normally, aqueous solutions ( 50%) are sold. There are two synthetic routes for acetalization, a direct heterogeneous reaction of glucose with the alcohol (120 °C/2 x 10 Pa) or a two-step process in which a short-chain alcohol (e.g., butanol) is reacted first with either glucose (115 °C/no pressure) or starch (140 °C/4 x 10 Pa under depolymerization). The resulting glucoside is further reacted (120 °C/2 X 10 Pa) in homogeneous phase with the fatty alcohol. The reduced pressure enhances the removal of water. In both routes, acid catalysis is used. The excess alcohol is separated by - distillation. [Pg.8]

Burger, K., Separation of surface-active ethylene oxide adducts of fatty acids, fatty alcohols, fatty amines, fatty acid amides, and alkylphenols from PEG and determination by liquid-liquid extraction (in German), Fresenius Z. Anal. Chem., 1963, 96, 22-26. [Pg.102]

Most LB-forming amphiphiles have hydrophobic tails, leaving a very hydrophobic surface. In order to introduce polarity to the final surface, one needs to incorporate bipolar components that would not normally form LB films on their own. Berg and co-workers have partly surmounted this problem with two- and three-component mixtures of fatty acids, amines, and bipolar alcohols [175, 176]. Interestingly, the type of deposition depends on the contact angle of the substrate, and, thus, when relatively polar monolayers are formed, they are deposited as Z-type multilayers. Phase-separated LB films of hydrocarbon-fluorocarbon mixtures provide selective adsorption sites for macromolecules, due to the formation of a step site at the domain boundary [177]. [Pg.560]

Patty esters (wax esters), formed by ester interchange of the product alcohol and the starting material in the hydrogenolysis reactors, are later separated from the product by distillation. Unreacted methyl esters are also converted to fatty esters in the distillation step... [Pg.446]

Secondary alcohols (C q—for surfactant iatermediates are produced by hydrolysis of secondary alkyl borate or boroxiae esters formed when paraffin hydrocarbons are air-oxidized ia the presence of boric acid [10043-35-3] (19,20). Union Carbide Corporation operated a plant ia the United States from 1964 until 1977. A plant built by Nippon Shokubai (Japan Catalytic Chemical) ia 1972 ia Kawasaki, Japan was expanded to 30,000 t/yr capacity ia 1980 (20). The process has been operated iadustriaHy ia the USSR siace 1959 (21). Also, predominantiy primary alcohols are produced ia large volumes ia the USSR by reduction of fatty acids, or their methyl esters, from permanganate-catalyzed air oxidation of paraffin hydrocarbons (22). The paraffin oxidation is carried out ia the temperature range 150—180°C at a paraffin conversion generally below 20% to a mixture of trialkyl borate, (RO)2B, and trialkyl boroxiae, (ROBO). Unconverted paraffin is separated from the product mixture by flash distillation. After hydrolysis of residual borate esters, the boric acid is recovered for recycle and the alcohols are purified by washing and distillation (19,20). [Pg.460]

In the initial black Hquor concentration, saponified fatty and resin acid salts separate as tall oil soaps (see Tall oil). These soaps can be skimmed from the aqueous spent Hquor, acidified, and refined to give a cmde tall oil composed of resin acids, chiefly abietic and neoabietic fatty acids, chiefly oleic and Hnoleic and an unsaponifiable fraction made of phytosterols, alcohols, and hydrocarbons. Tall oil is fractionated primarily into fatty acids (see... [Pg.270]

Synthesis and Manufacture of Amines. The chemical and busiaess segments of amines (qv) and quaternaries are so closely linked that it is difficult to consider these separately. The majority of commercially produced amines origiaate from three amine raw materials natural fats and oils, a-olefins, and fatty alcohols. Most large commercial manufacturers of quaternary ammonium compounds are fully back-iategrated to at least one of these three sources of amines. The amines are then used to produce a wide array of commercially available quaternary ammonium compounds. Some iadividual quaternary ammonium compounds can be produced by more than one synthetic route. [Pg.381]

Provitamin D. Provitamin is made from cholesterol, and its commercial production begias with the isolation of cholesterol from one of its natural sources. Cholesterol occurs ia many animals, and is generally extracted from wool grease obtained by washing wool after it is sheared from sheep. This grease is a mixture of fatty-acid esters, which contain ca 15 wt % cholesterol. The alcohol fraction is obtained after saponification, and the cholesterol is separated, usually by complexation with 2iac chloride, followed by decomplexation and crystallisation. Cholesterol can also be extracted from the spiaal cords and brains of animals, especially catde, and from fish oils. [Pg.127]

Since the acetal exists in equiUbtium with the aldehyde, it is possible for the aldehyde to be released when water is added in a mixed drink, changing the balance and giving a burst of freshness to a mixed drink. Ethyl esters of terpene alcohols in citms oils and other botanicals, plus the ethyl esters of fatty and volatile acids, are formed during prolonged exposure to ethyl alcohol. Certain beverage alcohol products that need to contain milk, eggs, or other protein containing materials must be developed carefully and the added flavors must be considered to prevent the precipitation of the protein and separation of the product. [Pg.90]

Acids that are solids can be purified in this way, except that distillation is replaced by repeated crystallisation (preferable from at least two different solvents such as water, alcohol or aqueous alcohol, toluene, toluene/petroleum ether or acetic acid.) Water-insoluble acids can be partially purified by dissolution in N sodium hydroxide solution and precipitation with dilute mineral acid. If the acid is required to be free from sodium ions, then it is better to dissolve the acid in hot N ammonia, heat to ca 80°, adding slightly more than an equal volume of N formic acid and allowing to cool slowly for crystallisation. Any ammonia, formic acid or ammonium formate that adhere to the acid are removed when the acid is dried in a vacuum — they are volatile. The separation and purification of naturally occurring fatty acids, based on distillation, salt solubility and low temperature crystallisation, are described by K.S.Markley (Ed.), Fatty Acids, 2nd Edn, part 3, Chap. 20, Interscience, New York, 1964. [Pg.62]

Suitable organic solvents, such as ether, benzene, naphtha and the like, are more soluble than in water. This makes it possible to separate them from other substances which may accompany them in the water solution but which are not soluble in the solvents employed. Hence, one application of solvent extraction is the analytical determination of unsaponifiable oils and waxes in admixture with fatty material by submitting the mixture to vigorous saponification with alcoholic potash or, if necessary, sodium ethylate, and to dilute the product with water and extract with petroleum ether. The soaps remain in the aqueous solution while the unsaponifiable oils and waxes dissolved in the ether. The addition of a salt to an aqueous solution prior to extraction is sometimes practiced in some processes. In older processes, SOj is employed in the separation of aromatic and highly saturated hydrocarbons, taking advantage of the much greater solubility of the solubility of the aromatics and... [Pg.324]

The amount of residual sulfonate ester remaining after hydrolysis can be determined by a procedure proposed by Martinsson and Nilsson [129], similar to that used to determine total residual saponifiables in neutral oils. Neutrals, including alkanes, alkenes, secondary alcohols, and sultones, as well as the sulfonate esters in the AOS, are isolated by extraction from an aqueous alcoholic solution with petroleum ether. The sulfonate esters are separated from the sultones by chromatography on a silica gel column. Each eluent fraction is subjected to saponification and measured as active matter by MBAS determination measuring the extinction of the trichloromethane solution at 642 nra. (a) Sultones. Connor et al. [130] first reported, in 1975, a very small amount of skin sensitizer, l-unsaturated-l,3-sultone, and 2-chloroalkane-l,3-sultone in the anionic surfactant produced by the sulfation of ethoxylated fatty alcohol. These compounds can also be found in some AOS products consequently, methods of detection are essential. [Pg.444]

For a further separation of the sulfonated surfactants the latter are heated for 4 h with 2 N HC1. The methyl ester sulfonates are split into methanol and a-sulfo fatty acids, which form disodium salts after neutralization with NaOH. The product mixture from acid hydrolysis can be separated by extraction with petroleum ether. For example, the fatty alcohols formed from fatty alcohol sulfo-... [Pg.491]

Simple mixtures—like in alkyl sulfosuccinates—can be run using only one solvent. For more complex systems (e.g., ethoxylated fatty alcohol sulfosuccinates) a gradient technique is strongly recommended Technical mixtures of disodium laureth sulfosuccinate could be separated [68]. The separation was so effective that resolution of single homologs of ethoxylates was possible. The detection limit of this method lies at around 0.5 pg. Therefore reverse phase ion pair chromatography seems to be an excellent tool to analyze sulfosuccinates directly without the use of any kind of manipulation. [Pg.516]

In order to convert the raw oils into useful material, transesterification technology is used. The oil is reacted with a low molecular weight alcohol, commonly methanol, in the presence of a catalyst to form the fatty acid ester and glycerol (Scheme 6.1). The ester is subsequently separated from the glycerol and used as biodiesel, the glycerol being used as a raw material for fine chemicals production. Although the chemistry is simple, in order to make biodiesel commercially viable the process must be... [Pg.174]

Fatty alcohol- (or alkyl-)ethoxylates, CoE, are considered to be better candidates for LLE based on their ability to induce rapid phase separation for Winsor II and III systems. (Winsor III systems consist of excess aqueous and organic phases, and a middle phase containing bicontinuous microemulsions.) However, C,E,-type surfactants alone cannot extract biomolecules, presumably because they have no net negative charge, in contrast to sorbitan esters [24,26,30,31]. But, when combined with an additional anionic surfactant such as AOT or sodium benzene dodecyl sulfonate (SDBS), or affinity surfactant, extraction readily occurs [30,31]. The second surfactant must be present beyond a minimum threshold value so that its interfacial concentration is sufficiently large to be seen by... [Pg.482]


See other pages where Alcohols fatty, separation is mentioned: [Pg.163]    [Pg.301]    [Pg.83]    [Pg.247]    [Pg.70]    [Pg.650]    [Pg.509]    [Pg.440]    [Pg.446]    [Pg.447]    [Pg.447]    [Pg.448]    [Pg.347]    [Pg.412]    [Pg.8]    [Pg.86]    [Pg.304]    [Pg.127]    [Pg.85]    [Pg.107]    [Pg.439]    [Pg.1030]    [Pg.168]    [Pg.356]    [Pg.7]    [Pg.21]    [Pg.305]    [Pg.321]   
See also in sourсe #XX -- [ Pg.547 ]




SEARCH



Alcohols fatty alcohol

Alcohols separation

Fatty alcohols

© 2024 chempedia.info