Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixtures technical

Soil removal from wool by LAS/alkyl ether sulfate mixtures (technical products)... [Pg.24]

It could be expected, that combustion reactions and possibly flames can be produced in such dense supercritical mixtures. Technical aspects of hydrothermal oxydation at moderate pressures have already been tested and discussed [7,8]. The study of combustion and flames in supercritical phases offers several possibilities 1. The variation of pressure over wide ranges should influence reaction mechanisms and flame characteristics because the density can be changed from low, gas-like, to high, liquid-like, values. 2. The variable temperature of the dense, fluid environment can have an influence on reactions and flames. 3. The chemical and physical character of this environment can be varied considerably, for example by using supercritical water as the major component, as in the present experiments. Certainly, the knowledge of transport coefficients of gases involved is desirable. For water the viscosity has been determined to... [Pg.1]

European Centre for Ecotoxicology and Toxicology of Chemicals [ECETOC]. 2001. Aquatic toxicity of mixtures. Technical Report No. 80. Brussels (Belgium) ECETOC, 64 p. [Pg.335]

Stange states "The experimental results are from the thesis of R. Schaeffer, Mixture of Granular Substances Comparisone between (he Variations of Samples by Calculation and Experimentation with Molding Sand Mixtures (Technical University at Karlsruhe, 1953)/ ... [Pg.267]

Anonymous (2008). Owen Peter Lamb. Star Tribune Newspaper Twin Cities (Aug. 11) 8. P Lamb, O.P., Killen, J.M. (1950). An electrical method for measuring air in flowing air-water mixture. Technical Paper B2. St. Anthony Falls Hydraulic Laboratory Minneapohs. Stefan, H.G., Foufoula-Georgiu, E., Arndt, R.E.A. (2004). The St. Anthony Falls Laboratory A rich history and a bright future. Proc. EWRI Annual Meeting. 185-197. [Pg.528]

SETRA. 2008. The Use of Standards for Hot Mixtures. Technical Guide. Paris SETRA. [Pg.295]

I ution of flaiianable mixture Technical deviation in the control system... [Pg.130]

The constants k- enable the improved representation of binary equilibria and should be carefully determined starting from experimental results. The API Technical Data Book has published the values of constants k j for a number of binary systems. The use of these binary interaction coefficients is necessary for obtaining accurate calculation results for mixtures containing light components such as ... [Pg.156]

A suitable maintenance strategy should be developed for equipment by considering the criticality and failure mode, and then applying a mixture of the forms of maintenance described above. In particular, the long-term cost of maintenance of an item of equipment should be estimated over the whole life of the project and combined with its capital cost to select both the type of equipment and form of maintenance which gives the best full lifecycle cost on a discounted basis), while of course meeting the technical, safety and environmental specifications. [Pg.290]

Pure Ether. Pure ether (entirely free in particular from water) is frequently required in the laboratory, and especially for the preparation and use of Grignard reagents. It is best prepared in quantity for classes by adding an ample quantity of granular calcium chloride to a Winchester bottle of technical ether, and allowing the mixture to stand for at least 24 hours, preferably with occasional shaking. The greater part of the water and... [Pg.82]

The chief uses of chromatographic adsorption include (i) resolution of mixtures into their components (Li) purification of substances (including technical products from their contaminants) (iii) determination of the homogeneity of chemical substances (iv) comparison of substances suspected of being identical (v) concentration of materials from dilute solutions (e.g., from a natural source) (vi) quantita tive separation of one or more constituents from a complex mixture and (vii) identi-1 ig- II, 16, 3. gcajjQij and control of technical products. For further details, the student is referred to specialised works on the subject. ... [Pg.158]

In practice, it is best to purify a quantity, say one Winchester quart bottle, of technical 0 720 ether to cover the requirements of a group of students. The Winchester quart of ether is divided into two approximately equal volumes, and each is shaken vigorously in a large separatory funnel with 10-20 ml. of the above ferrous solution diluted with 100 ml. of water. The latter is removed, the ether transferred to the Winchester bottle, and 150-200 g. of anhydrous calcium chloride is added. The mixture is allowed to stand for at least 24 hours with occasional shaking. Both the water and the alcohol present are thus largely removed. The ether is then filtered through a large fluted filter paper into another clean dry Winchester bottle (CAUTION all flames in the vicinity must be... [Pg.163]

Pure pyridine may be prepared from technical coal-tar pyridine in the following manner. The technical pyridine is first dried over solid sodium hydroxide, distilled through an efficient fractionating column, and the fraction, b.p. 114 116° collected. Four hundred ml. of the redistilled p)rridine are added to a reagent prepared by dissolving 340 g. of anhydrous zinc chloride in a mixture of 210 ml. of concentrated hydrochloric acid and 1 litre of absolute ethyl alcohol. A crystalline precipitate of an addition compound (probable composition 2C5H5N,ZnCl2,HCl ) separates and some heat is evolved. When cold, this is collected by suction filtration and washed with a little absolute ethyl alcohol. The yield is about 680 g. It is recrystaUised from absolute ethyl alcohol to a constant m.p. (151-8°). The base is liberated by the addition of excess of concentrated... [Pg.175]

Cuprous cyanide solution. The most satisfactory method is to dissolve the cuprous cyanide (1 mol) in a solution of technical sodium cyanide (2 5-2-6 mols in 600 ml. of water). If it is desired to avoid the preparation of solid cuprous cyanide, the following procedure may be adopted. Cuprous chloride, prepared from 125 g. of copper sulphate crystals as described under 1 above, is suspended in 200 ml. of water contained in a 1-litre round-bottomed flask, which is fitted with a mechanical stirrer. A solution of 65 g. of technical sodium cyanide (96-98 per cent.) in 100 ml. of water is added and the mixture is stirred. The cuprous chloride passes into solution with considerable evolution of heat. As the cuprous cyanide is usually emplo3 ed in some modification of the diazo reaction, it is usual to cool the resulting solution in ice. [Pg.192]

C. Fumaric acid from furfural. Place in a 1-litre three-necked flask, fitted with a reflux condenser, a mechanical stirrer and a thermometer, 112 5 g. of sodium chlorate, 250 ml. of water and 0 -5 g. of vanadium pentoxide catalyst (1), Set the stirrer in motion, heat the flask on an asbestos-centred wire gauze to 70-75°, and add 4 ml. of 50 g. (43 ml.) of technical furfural. As soon as the vigorous reaction commences (2) bvi not before, add the remainder of the furfural through a dropping funnel, inserted into the top of the condenser by means of a grooved cork, at such a rate that the vigorous reaction is maintained (25-30 minutes). Then heat the reaction mixture at 70-75° for 5-6 hours (3) and allow to stand overnight at the laboratory temperature. Filter the crystalline fumaric acid with suction, and wash it with a little cold water (4). Recrystallise the crude fumaric acid from about 300 ml. of iif-hydrochloric acid, and dry the crystals (26 g.) at 100°. The m.p. in a sealed capillary tube is 282-284°. A further recrystaUisation raises the m.p. to 286-287°. [Pg.463]

Secondary and tertiary amines are not generally prepared in the laboratory. On the technical scale methylaniline is prepared by heating a mixture of aniline hydrochloride (55 parts) and methyl alcohol (16 parts) at 120° in an autoclave. For dimethylaniline, aniline and methyl alcohol are mixed in the proportion of 80 78, 8 parts of concentrated sulphuric acid are added and the mixture heated in an autoclave at 230-235° and a pressure of 25-30 atmospheres. Ethyl- and diethyl-anihne are prepared similarly. One method of isolating pure methyl- or ethyl-aniline from the commercial product consists in converting it into the Y-nitroso derivative with nitrous acid, followed by reduction of the nitroso compound with tin and hydrochloric acid ... [Pg.562]

Preparation of benzyl cyanide. Place 100 g. of powdered, technical sodium cyanide (97-98 per cent. NaCN) (CAUTION) and 90 ml. of water in a 1 litre round-bottomed flask provided with a reflux condenser. Warm on a water bath until the sodium cyanide dissolves. Add, by means of a separatory funnel fitted into the top of the condenser with a grooved cork, a solution of 200 g. (181-5 ml.) of benzyl chloride (Section IV.22) in 200 g. of rectified spirit during 30-45 minutes. Heat the mixture in a water bath for 4 hours, cool, and filter off the precipitated sodium chloride with suction wash with a little alcohol. Distil off as much as possible of the alcohol on a water bath (wrap the flask in a cloth) (Fig. II, 13, 3). Cool the residual liquid, filter if necessary, and separate the layer of crude benzyl cyanide. (Sometimes it is advantageous to extract the nitrile with ether or benzene.) Dry over a little anhydrous magnesium sulphate, and distil under diminished pressure from a Claisen flask, preferably with a fractionating side arm (Figs. II, 24, 2-5). Collect the benzyl cyanide at 102-103°/10 mm. The yield is 160 g. [Pg.761]

Prepare a saturated solution of sodium sulphide, preferably from the fused technical sodium polysulphide, and saturate it with sulphur the sulphur content should approximate to that of sodium tetrasulphide. To 50 ml. of the saturated sodium tetrasulphide solution contained in a 500 ml. round-bottomed flask provided with a reflux condenser, add 12 -5 ml. of ethylene dichloride, followed by 1 g. of magnesium oxide to act as catalyst. Heat the mixture until the ethylene dichloride commences to reflux and remove the flame. An exothermic reaction sets in and small particles of Thiokol are formed at the interface between the tetrasulphide solution and the ethylene chloride these float to the surface, agglomerate, and then sink to the bottom of the flask. Decant the hquid, and wash the sohd several times with water. Remove the Thiokol with forceps or tongs and test its rubber-like properties (stretching, etc.). [Pg.1024]

Place 250g of Ammonium Chloride and 500g of technical Formaldehyde (37%, Formalin). Rig the flask for simple distillation such that a thermometer extends into the reaction mixture, and a Liebig... [Pg.268]

Furfural reacts with ketones to form strong, crosslinked resins of technical interest in the former Soviet Union the U.S. Air Force has also shown some interest (42,43). The so-called furfurylidene acetone monomer, a mixture of 2-furfurylidene methyl ketone [623-15-4] (1 )> bis-(2-furfurylidene) ketone [886-77-1] (14), mesityl oxide, and other oligomers, is obtained by condensation of furfural and acetone under basic conditions (44,45). Treatment of the "monomer" with an acidic catalyst leads initially to polymer of low molecular weight and ultimately to cross-linked, black, insoluble, heat-resistant resin (46). [Pg.79]

The bottoms from the solvent recovery (or a2eotropic dehydration column) are fed to the foremns column where acetic acid, some acryflc acid, and final traces of water are removed overhead. The overhead mixture is sent to an acetic acid purification column where a technical grade of acetic acid suitable for ester manufacture is recovered as a by-product. The bottoms from the acetic acid recovery column are recycled to the reflux to the foremns column. The bottoms from the foremns column are fed to the product column where the glacial acryflc acid of commerce is taken overhead. Bottoms from the product column are stripped to recover acryflc acid values and the high boilers are burned. The principal losses of acryflc acid in this process are to the aqueous raffinate and to the aqueous layer from the dehydration column and to dimeri2ation of acryflc acid to 3-acryloxypropionic acid. If necessary, the product column bottoms stripper may include provision for a short-contact-time cracker to crack this dimer back to acryflc acid (60). [Pg.154]


See other pages where Mixtures technical is mentioned: [Pg.362]    [Pg.240]    [Pg.502]    [Pg.432]    [Pg.493]    [Pg.493]    [Pg.362]    [Pg.240]    [Pg.502]    [Pg.432]    [Pg.493]    [Pg.493]    [Pg.307]    [Pg.401]    [Pg.122]    [Pg.170]    [Pg.173]    [Pg.176]    [Pg.192]    [Pg.357]    [Pg.757]    [Pg.774]    [Pg.812]    [Pg.814]    [Pg.967]    [Pg.63]    [Pg.218]    [Pg.219]    [Pg.233]    [Pg.237]    [Pg.428]    [Pg.433]    [Pg.216]    [Pg.227]    [Pg.238]   
See also in sourсe #XX -- [ Pg.221 , Pg.255 ]




SEARCH



© 2024 chempedia.info