Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resin acid

Although catalytic hydration of ethylene oxide to maximize ethylene glycol production has been studied by a number of companies with numerous materials patented as catalysts, there has been no reported industrial manufacture of ethylene glycol via catalytic ethylene oxide hydrolysis. Studied catalysts include sulfonic acids, carboxyUc acids and salts, cation-exchange resins, acidic zeoHtes, haUdes, anion-exchange resins, metals, metal oxides, and metal salts (21—26). Carbon dioxide as a cocatalyst with many of the same materials has also received extensive study. [Pg.359]

Fig. 3. Resin acids in rosin sizes, R = CH(CH2)2- The rosin acids are represented here as abietic acid [514-10-3] (1) and levopimaric acid [79-54-9] (2). In rosin there are other isomers and disproportionation products. The product of reaction with fumaric acid (3) is levopimaric acid— fumaric acid adduct... Fig. 3. Resin acids in rosin sizes, R = CH(CH2)2- The rosin acids are represented here as abietic acid [514-10-3] (1) and levopimaric acid [79-54-9] (2). In rosin there are other isomers and disproportionation products. The product of reaction with fumaric acid (3) is levopimaric acid— fumaric acid adduct...
The choice of catalyst is based primarily on economic effects and product purity requirements. More recentiy, the handling of waste associated with the choice of catalyst has become an important factor in the economic evaluation. Catalysts that produce less waste and more easily handled waste by-products are strongly preferred by alkylphenol producers. Some commonly used catalysts are sulfuric acid, boron trifluoride, aluminum phenoxide, methanesulfonic acid, toluene—xylene sulfonic acid, cationic-exchange resin, acidic clays, and modified zeoHtes. [Pg.62]

Wood also contains 3—10% of extraceUulat, low molecular weight constituents, many of which can be extracted from the wood using neutral solvents and therefore ate commonly caUed extractives. These include the food reserves, the fats and their esters in parenchyma ceUs, the terpenes and resin acids in epitheUal ceUs and resin ducts, and phenoUc materials in the heartwood. Resin materials occur in the vessels of some hardwood heartwood. [Pg.248]

In the initial black Hquor concentration, saponified fatty and resin acid salts separate as tall oil soaps (see Tall oil). These soaps can be skimmed from the aqueous spent Hquor, acidified, and refined to give a cmde tall oil composed of resin acids, chiefly abietic and neoabietic fatty acids, chiefly oleic and Hnoleic and an unsaponifiable fraction made of phytosterols, alcohols, and hydrocarbons. Tall oil is fractionated primarily into fatty acids (see... [Pg.270]

The three types of rosin perform differently because of different distributions of resin acids, as well as different types and quantities of impurities. These differences are reflected in end-use performance. [Pg.138]

Composition. Rosin is primarily a complex mixture of monocarboxyUc acids of alkylated hydrophenanthrene nuclei. These constituents, known as resin acids, represent about 90% of rosin. The resin acids are subdivided into two types, based on their skeletal stmcture. The abietic-type acids contain an isopropyl group pendent from the carbon numbered 13. The pimaric-type acids have a methyl and vinyl group pendent from the same carbon atom. Figure 1 shows the stmcture of typical resin acids abietic acid, C2QH2QO2 (1) is predominant. The remaining 10% of commercial rosin consists of neutral materials that are either hydrocarbons or saponifiable esters. These materials are derived from resin acids by decarboxylation or esterification. [Pg.138]

In disproportionation, rosin is heated over a catalyst to transfer hydrogen, yielding dehydro (5) and dihydro (8) resin acids. The dehydro acids are stabilized by the aromatic ring the dihydro acids contain only an isolated double bond in place of the less stable conjugated double bonds. [Pg.139]

Gum Elemi. This resin, tapped from trees in the Philippines, contains a higher concentration of essential oils than other natural resins. It is a soft, sticky, plastic material that can be deformed manually. Gum elemi [9000-75-3] contains 20—25% essential oils, 13—19% acids, 30—35% resenes (condensed decarboxylated resin acids), and 20—25% terpenic resinols (condensed terpene alcohols). It has an acid number of 20—35 and a saponification number of 20—40. Gum elemi is a film-forming plasticizing resin used in lacquers. [Pg.140]

A acrylonitrile potassium salts of dispro-portionated resin acids and fatty acid 31 9.5 41 maximum hot-oil and plasticizer resistance asbestos binder, back coatings... [Pg.255]

A sodium salts of resin acids 38 12.0 60 creamed Latex 842A mastics... [Pg.255]

A sodium salts of dispropor-tionated resin acids 38.5 11.5 45 designed for wet-end addi-tion to fibrous slurries fiber binder... [Pg.255]

A sodium salts of resin acids 37.5 12.0 50 medium strength cured films having a slow crystallization rate adhesives, dipped goods, saturants, coatings, bonded batts... [Pg.255]

Black Liquor Soap Acidulation. Only two-thirds of a typical black Hquor soap consists of the sodium salts of fatty acids and resin acids (rosin). These acids are layered in a Hquid crystal fashion. In between these layers is black Hquor at the concentration of the soap skimmer, with various impurities, such as sodium carbonate, sodium sulfide, sodium sulfate, sodium hydroxide, sodium Hgnate, and calcium salts. This makes up the remaining one-third of the soap. Cmde tall oil is generated by acidifying the black Hquor soap with 30% sulfuric acid to a pH of 3. This is usually done in a vessel at 95°C with 20—30 minutes of vigorous agitation. Caution should be taken to scmb the hydrogen sulfide from the exhaust gas. [Pg.305]

The cmde tall oil fatty acids obtained from the rosin column usually contain about 5% rosin because the boiling points of the heavier fatty acids and the lighter resin acids overlap. By adding the intermediate fraction to the fatty acid, rosin does not have to be redistilled. [Pg.305]

Dlterpenes. Diterpenes contain 20 carbon atoms. The resin acids and Vitamin A are the most commercially important group of diterpenes. GibbereUic acid [77-06-5] (110), produced commercially by fermentation processes, is used as a growth promoter for plants, especially seedlings. [Pg.430]

Wood is the raw material of the naval stores iadustry (77). Naval stores, so named because of their importance to the wooden ships of past centuries, consist of rosin (diterpene resin acids), turpentine (monoterpene hydrocarbons), and associated chemicals derived from pine (see Terpenoids). These were obtained by wounding the tree to yield pine gum, but the high labor costs have substantially reduced this production in the United States. Another source of rosin and turpentine is through extraction of old pine stumps, but this is a nonrenewable resource and this iadustry is in decline. The most important source of naval stores is spent sulfate pulpiag Hquors from kraft pulpiag of pine. In 1995, U.S. production of rosin from all sources was estimated at under 300,000 metric tons and of turpentine at 70,000 metric tons. Distillation of tall oil provides, in addition to rosin, nearly 128,000 metric tons of tall oil fatty acids annually (78). [Pg.331]

Paper with enhanced wet-strength may be obtained by incorporating melamine resin acid colloid into the pulp. Melamine resin acid colloid is obtained by dissolving a lightly condensed melamine resin or trihydroxymethylmelamine, which are both normally basic in nature, in dilute hydrochloric acid. Further condensation occurs in solution and eventually a colloidal solution is formed in which the particles have a positive charge. Careful control over the constitution of the colloidal solution must be exercised in order to obtain products of maximum stability. [Pg.689]

Resin acids in rosin (colophony) solder flux fume Lab method using gas chromatography 83... [Pg.362]

Tall oil rosin is obtained from crude tall oil obtained from the Kraft (sulphate) pulping of various coniferous trees in the paper manufacturing industry. During the Kraft pulping process the fatty acids and the resin acids from the coniferous wood are saponified by the alkaline medium. On concentration of the resulting pulping liquor, the sodium soap of these mixed acids rises to the surface from where they are skimmed out. By acidification of this material with sulphuric acid, the crude tall oil is obtained. Fractional steam distillation of the crude tall oil allows the separation of the tall oil fatty acids and the tall oil rosins [21]. [Pg.599]

Chemistry of rosin. All three types of rosin consist primarily of C20 mono-carboxylic diterpene resin acids, the most common of which have the molecular formula C20H20O2. In addition, rosins contain small amounts of neutral and other acidic components (e.g. fatty acids in tall oil rosin). The neutral components of rosins are diterpene alcohols, hydrocarbons and aldehydes, and their contents generally vary between 5 and 15 wt%. [Pg.599]

With very few exceptions, the pine resin acids belong to four basic skeletal classes abietane, pimarane, isopimarane, and labdane (Fig. 7). The acids of the abietane, pimarane and isopimarane series have a isopropyl or methyl/ethyl group in the carbon-13 position and a single carboxyl group in the carbon-18 position, and differ only in the number and location of the carbon-carbon double bonds (the most common have two carbon-carbon double bonds). The acids of labdane series are less common and contain one carboxyl group in the carbon-19 position. [Pg.599]

The structures and nomenclature for the common pine resin acids based on the abietane skeleton (abietic-type acids) are given in Fig. 8. The abietic, neoabietic, palustric and levopimaric acids differ only in tbe location of tbeir two double bonds. All double bonds are endocyclic, except in the neoabietic acid in which one is exocyclic. [Pg.599]

The common pine resin acids based on the pimarane and isopimarane skeletal (pimaric-type acids) are shown in Fig. 9. The pimarane and isopimarane acids series differ only in the methyl group position in the carbon-13 position. Isopimaric and sandaracopimaric acids differ in the location of the carbon-carbon double bond. [Pg.601]

The resin acids found in rosins are generally of the abietic- and pimaric-type. Rosins of various pine species differ in their content of abietic vs. pimaric-type acids. Rosins from species exhibiting high abietic-type acid compositions are preferred for production of rosin derivatives. However, the differences in properties of rosins are often associated with their non-resin acid content instead of their chemical compositions. On the other hand, the compositions of rosins from different sources greatly differ [22]. Table 8 shows a typical distribution of resin acids in rosins obtained from gum, tall oil and wood sources. [Pg.601]

Most rosin utilization takes advantage of the carboxyl and olefinic functionalities of the resin acids. [Pg.601]

Typical composition (in per cent of acid fraction) of the common resin acids in rosins obtained from different sources [22]... [Pg.602]

Resin acid Tall oil rosin Wood rosin Gum rosin... [Pg.602]


See other pages where Resin acid is mentioned: [Pg.347]    [Pg.849]    [Pg.23]    [Pg.331]    [Pg.139]    [Pg.140]    [Pg.255]    [Pg.255]    [Pg.255]    [Pg.255]    [Pg.255]    [Pg.255]    [Pg.255]    [Pg.47]    [Pg.304]    [Pg.304]    [Pg.305]    [Pg.305]    [Pg.306]    [Pg.370]    [Pg.775]    [Pg.598]   
See also in sourсe #XX -- [ Pg.121 ]

See also in sourсe #XX -- [ Pg.89 , Pg.91 ]

See also in sourсe #XX -- [ Pg.180 ]

See also in sourсe #XX -- [ Pg.52 , Pg.190 ]

See also in sourсe #XX -- [ Pg.371 ]

See also in sourсe #XX -- [ Pg.4 , Pg.5 ]

See also in sourсe #XX -- [ Pg.58 , Pg.62 ]

See also in sourсe #XX -- [ Pg.249 ]

See also in sourсe #XX -- [ Pg.266 ]

See also in sourсe #XX -- [ Pg.46 , Pg.47 , Pg.48 , Pg.49 , Pg.50 , Pg.51 , Pg.52 , Pg.53 ]




SEARCH



Acidic resin

Resinic acids

© 2024 chempedia.info