Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophobic tails

Most LB-forming amphiphiles have hydrophobic tails, leaving a very hydrophobic surface. In order to introduce polarity to the final surface, one needs to incorporate bipolar components that would not normally form LB films on their own. Berg and co-workers have partly surmounted this problem with two- and three-component mixtures of fatty acids, amines, and bipolar alcohols [175, 176]. Interestingly, the type of deposition depends on the contact angle of the substrate, and, thus, when relatively polar monolayers are formed, they are deposited as Z-type multilayers. Phase-separated LB films of hydrocarbon-fluorocarbon mixtures provide selective adsorption sites for macromolecules, due to the formation of a step site at the domain boundary [177]. [Pg.560]

Figure B3.6.4. Illustration of tliree structured phases in a mixture of amphiphile and water, (a) Lamellar phase the hydrophilic heads shield the hydrophobic tails from the water by fonning a bilayer. The amphiphilic heads of different bilayers face each other and are separated by a thin water layer, (b) Hexagonal phase tlie amphiphiles assemble into a rod-like structure where the tails are shielded in the interior from the water and the heads are on the outside. The rods arrange on a hexagonal lattice, (c) Cubic phase amphiphilic micelles with a hydrophobic centre order on a BCC lattice. Figure B3.6.4. Illustration of tliree structured phases in a mixture of amphiphile and water, (a) Lamellar phase the hydrophilic heads shield the hydrophobic tails from the water by fonning a bilayer. The amphiphilic heads of different bilayers face each other and are separated by a thin water layer, (b) Hexagonal phase tlie amphiphiles assemble into a rod-like structure where the tails are shielded in the interior from the water and the heads are on the outside. The rods arrange on a hexagonal lattice, (c) Cubic phase amphiphilic micelles with a hydrophobic centre order on a BCC lattice.
For structures with a high curvature (e.g., small micelles) or situations where orientational interactions become important (e.g., the gel phase of a membrane) lattice-based models might be inappropriate. Off-lattice models for amphiphiles, which are quite similar to their counterparts in polymeric systems, have been used to study the self-assembly into micelles [ ], or to explore the phase behaviour of Langmuir monolayers [ ] and bilayers. In those systems, various phases with a nematic ordering of the hydrophobic tails occur. [Pg.2377]

A fiirther step in coarse graining is accomplished by representing the amphiphiles not as chain molecules but as single site/bond entities on a lattice. The characteristic architecture of the amphiphile—the hydrophilic head and hydrophobic tail—is lost in this representation. Instead, the interaction between the different lattice sites, which represent the oil, the water and the amphiphile, have to be carefiilly constmcted in order to bring about the amphiphilic behaviour. [Pg.2379]

Figure C2.3.14. Isolated surfactant modes of adsorjDtion at liquid-solid interfaces for a surfactant having a distinct headgroup and hydrophobic portion (dodecyltrimetlrylammonium cation) (a), (b) headgroup specific interaction (c), (d) hydrophobic tail interaction, (e),(f) headgroup and tail interactions. Figure C2.3.14. Isolated surfactant modes of adsorjDtion at liquid-solid interfaces for a surfactant having a distinct headgroup and hydrophobic portion (dodecyltrimetlrylammonium cation) (a), (b) headgroup specific interaction (c), (d) hydrophobic tail interaction, (e),(f) headgroup and tail interactions.
Surfactants are long-chain compounds containing a hydrophobic tail and an ionic head. In polar solvents the surfactants arrange themselves in a spherical structure known as a micelle in which the hydrophobic tails form the... [Pg.447]

An agglomeration of molecules containing ionic heads and hydrophobic tails, which form into a structure with a hydrophobic interior and a hydrophilic exterior. [Pg.606]

Fig. 1. A trough for deposition of monolayers on soHd substrates A, bath B, a moving barrier C, a motor D, a pressure-control device E, a surface pressure balance F, a motor with a gearbox that lowers and raises the substrate and G, a soHd substrate. The film material (S) has a hydrophobic tail and... Fig. 1. A trough for deposition of monolayers on soHd substrates A, bath B, a moving barrier C, a motor D, a pressure-control device E, a surface pressure balance F, a motor with a gearbox that lowers and raises the substrate and G, a soHd substrate. The film material (S) has a hydrophobic tail and...
Electronic effects within the acid portion of the precursor have also been utilized for enhanced reactivity. The 4-hydroxybenzenesulfonate ester of octanoyloxyacetic acid, (15), undergoes efficient perhydrolysis at lower pHs because of the activation of the susceptible carbonyl by the beta-oxygen of the hydrophobic tail (100). [Pg.148]

The functional reaction center contains two quinone molecules. One of these, Qb (Figure 12.15), is loosely bound and can be lost during purification. The reason for the difference in the strength of binding between Qa and Qb is unknown, but as we will see later, it probably reflects a functional asymmetry in the molecule as a whole. Qa is positioned between the Fe atom and one of the pheophytin molecules (Figure 12.15). The polar-head group is outside the membrane, bound to a loop region, whereas the hydrophobic tail is... [Pg.238]

FIG. 1 Self-assembled structures in amphiphilic systems micellar structures (a) and (b) exist in aqueous solution as well as in ternary oil/water/amphiphile mixtures. In the latter case, they are swollen by the oil on the hydrophobic (tail) side. Monolayers (c) separate water from oil domains in ternary systems. Lipids in water tend to form bilayers (d) rather than micelles, since their hydrophobic block (two chains) is so compact and bulky, compared to the head group, that they cannot easily pack into a sphere [4]. At small concentrations, bilayers often close up to form vesicles (e). Some surfactants also form cyhndrical (wormlike) micelles (not shown). [Pg.632]

Amphiphilic molecules (surfactants) are composed of two different parts hydrophobic tail and hydrophilic head [1 ]. Due to their chemical structure they self-assemble into internal surfaces in water solutions or in mixtures of oil and water, where the tails are separated from the water solvent. These surfaces can form closed spherical or cylindrical micelles or bicontinuous phases [3,5]. In the latter case a single surface extends over the volume of the system and divides it into separated and mutually interwoven subvolumes. [Pg.686]

Amphipathic lipids spontaneously form a variety of structures when added to aqueous solution. All these structures form in ways that minimize contact between the hydrophobic lipid chains and the aqueous milieu. For example, when small amounts of a fatty acid are added to an aqueous solution, a mono-layer is formed at the air-water interface, with the polar head groups in contact with the water surface and the hydrophobic tails in contact with the air (Figure 9.2). Few lipid molecules are found as monomers in solution. [Pg.261]

Further addition of fatty acid eventually results in the formation of micelles. Micelles formed from an amphipathic lipid in water position the hydrophobic tails in the center of the lipid aggregation with the polar head groups facing outward. Amphipathic molecules that form micelles are characterized by a unique critical micelle concentration, or CMC. Below the CMC, individual lipid molecules predominate. Nearly all the lipid added above the CMC, however, spontaneously forms micelles. Micelles are the preferred form of aggregation in water for detergents and soaps. Some typical CMC values are listed in Figure 9.3. [Pg.261]

Hydrophobic-tailed tetramers Abundant form in the mammalian CNS. Anchored to plasma membranes by a hydrophobic, 20 kDalton length polypeptide subunit named PRiMA (Proline-Rich Membrane Anchor). [Pg.359]

Phospholipids are a major component of all biological membranes together with glycolipids and cholesterol. Due to their polar nature, i.e. hydrophilic head and hydrophobic tail, phospholipids form in water vesicles or liposomes. [Pg.970]

As esters of sulfuric acid, the hydrophilic group of alcohol sulfates and alcohol ether sulfates is the sulfate ion, which is linked to the hydrophobic tail through a C-O-S bond. This bond gives the molecule a relative instability as this linkage is prone to hydrolysis in acidic media. This establishes a basic difference from other key anionic surfactants such as alkyl and alkylbenzene-sulfonates, which have a C-S bond, completely stable in all normal conditions of use. The chemical structure of these sulfate molecules partially limits their conditions of use and their application areas but nevertheless they are found undoubtedly in the widest range of application types among anionic surfactants. [Pg.224]

The initial studies of LSDAs were carried out with oleochemicals because of their structural similarity to soap. However, since the molecular structure of an efficient LSDA is characterized by a bulky hydrophilic polar head attached to a long hydrophobic tail, it is also possible to prepare LSDAs from petrochemicals. Sulfated sulfonamide derivatives of alkylbenzenes, such as commercially available detergent alkylates, were synthesized as follows [17] ... [Pg.634]

Surfactants have a unique long-chain molecular structure composed of a hydrophilic head and hydrophobic tail. Based on the nature of the hydrophilic part surfactants are generally categorized as anionic, non-ionic, cationic, and zwitter-ionic. They all have a natural tendency to adsorb at surfaces and interfaces when added in low concentration in water. Surfactant absorption/desorption at the vapor-liquid interface alters the surface tension, which decreases continually with increasing concentrations until the critical micelle concentration (CMC), at which micelles (colloid-sized clusters or aggregates of monomers) start to form is reached (Manglik et al. 2001 Hetsroni et al. 2003c). [Pg.65]

Step 2 - A patch pipet is removed from the solution, the polar head groups of the monolayer lipids are adsorbed to the interface while the fatty acid hydrophobic tails are exposed to the air ... [Pg.360]

Sodium stearate is a typical surfactant molecule. It has an ionic, hydrophilic head and a nonpolar, hydrophobic tail. [Pg.870]

Some surfactants are used as emulsifiers in processed foods such as bottled salad dressing. An emulsifier causes normally incompatible liquids such as the oil and water in salad dressing to disperse in each other, by forming molecular connections between the liquids. The hydrophobic tails of emulsifier molecules Interact with oil molecules, while the hydrophilic heads on the emulsifier molecules interact with water molecules. [Pg.874]

Lecithin, a common phospholipid, has a hydrophobic tail and a hydrophilic head. [Pg.875]

Surfactants employed for w/o-ME formation, listed in Table 1, are more lipophilic than those employed in aqueous systems, e.g., for micelles or oil-in-water emulsions, having a hydrophilic-lipophilic balance (HLB) value of around 8-11 [4-40]. The most commonly employed surfactant for w/o-ME formation is Aerosol-OT, or AOT [sodium bis(2-ethylhexyl) sulfosuccinate], containing an anionic sulfonate headgroup and two hydrocarbon tails. Common cationic surfactants, such as cetyl trimethyl ammonium bromide (CTAB) and trioctylmethyl ammonium bromide (TOMAC), have also fulfilled this purpose however, cosurfactants (e.g., fatty alcohols, such as 1-butanol or 1-octanol) must be added for a monophasic w/o-ME (Winsor IV) system to occur. Nonionic and mixed ionic-nonionic surfactant systems have received a great deal of attention recently because they are more biocompatible and they promote less inactivation of biomolecules compared to ionic surfactants. Surfactants with two or more hydrophobic tail groups of different lengths frequently form w/o-MEs more readily than one-tailed surfactants without the requirement of cosurfactant, perhaps because of their wedge-shaped molecular structure [17,41]. [Pg.472]

When a monolayer of phospholipids is adsorbed at the ITIES, there must be a modification of the electrical structure of the interface [60]. Since we aim at describing the effect of this monolayer on the rate of ion transfer in a simple way, we assume a sharp interface also in the presence of phospholipids. The hydrophobic tails are located in the organic phase (negative x region), and the hydrophilic headgroups are located in the aqueous phase (positive X region). [Pg.547]


See other pages where Hydrophobic tails is mentioned: [Pg.484]    [Pg.606]    [Pg.775]    [Pg.427]    [Pg.427]    [Pg.149]    [Pg.149]    [Pg.147]    [Pg.648]    [Pg.651]    [Pg.40]    [Pg.154]    [Pg.714]    [Pg.26]    [Pg.26]    [Pg.247]    [Pg.632]    [Pg.1000]    [Pg.42]    [Pg.870]    [Pg.876]    [Pg.75]    [Pg.542]    [Pg.31]    [Pg.40]    [Pg.40]   
See also in sourсe #XX -- [ Pg.376 ]

See also in sourсe #XX -- [ Pg.56 ]

See also in sourсe #XX -- [ Pg.21 , Pg.95 ]

See also in sourсe #XX -- [ Pg.239 , Pg.240 ]




SEARCH



Compositional changes, hydrophobic tail

Hydrophobic tail volume variation

Hydrophobic “tail,” of surfactant

Molecular packing, hydrophobic tail

© 2024 chempedia.info