Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Step sites

Most LB-forming amphiphiles have hydrophobic tails, leaving a very hydrophobic surface. In order to introduce polarity to the final surface, one needs to incorporate bipolar components that would not normally form LB films on their own. Berg and co-workers have partly surmounted this problem with two- and three-component mixtures of fatty acids, amines, and bipolar alcohols [175, 176]. Interestingly, the type of deposition depends on the contact angle of the substrate, and, thus, when relatively polar monolayers are formed, they are deposited as Z-type multilayers. Phase-separated LB films of hydrocarbon-fluorocarbon mixtures provide selective adsorption sites for macromolecules, due to the formation of a step site at the domain boundary [177]. [Pg.560]

Whereas the adsorption energies of the adsorbed molecules and fragment atoms only slightly change, the activation barriers at step sites are substantially reduced compared to those at the terrace. Different from activation of a-type bonds, activation of tt bonds at different sites proceeds through elementary reaction steps for which there is no relation between reaction energy and activation barrier. The activation barrier for the forward dissociation barrier as weU as for the reverse recombination barrier is reduced for step-edge sites. [Pg.22]

The relevance of the same nonsurface metal atom sharing principle in transition states is nicely illustrated by the similar lowering of the transition state for NH activation by O in a step site as for the (100) surface, as illustrated in Figure 1.21 [19]. Similarly, OH formation by recombination of oxygen and hydrogen is substantially lower at a step edge than on the (111) terrace. [Pg.27]

Note that the dissociation proceeds with a much lower barrier on the stepped surface. As the structure diagrams show, at all stages in the dissociation the species are more strongly bound on the stepped surface, for reasons discussed in connection with Eq. (87). However, the transition state is most affected, because two N atoms are bound to four metal atoms in the transition state on a perfect surface, whereas that on the stepped surface consists of five metal atoms. As noted above, geometries in which atoms bind to different metal atoms are always more stable than when the two adsorbate atoms share one metal atom. Hence, dissociation is favored over step sites, and if a surface contains such defects they may easily dominate the kinetics. [Pg.256]

The second case in Fig. 7.7 corresponds to first-order desorption of CO from a stepped Pt(112) surface. This surface consists of (111) terraces and (100) steps. At coverages below one-third of a monolayer, CO only occupies the step sites, while at higher coverage the terraces are also populated, resulting in two clearly distinguish-... [Pg.275]

In the following we consider nitrogen atoms adsorbed on a ruthenium surface that is not completely flat but has an atomic step for each one hundred terrace atoms in a specific direction. The nitrogen atoms bond stronger to the steps than to the terrace sites by 20 kj mok. The vibrational contributions of the adsorbed atoms can be assumed to be equal for the two types of sites. (Is that a good assumption ) Determine how the coverage of the step sites varies with terrace coverage. [Pg.424]

In order to assess the role of the platinum surface structure and of CO surface mobility on the oxidation kinetics of adsorbed CO, we carried out chronoamperometry experiments on a series of stepped platinum electrodes of [n(l 11) x (110)] orientation [Lebedeva et al., 2002c]. If the (110) steps act as active sites for CO oxidation because they adsorb OH at a lower potential than the (111) terrace sites, one would expect that for sufficiently wide terraces and sufficiently slow CO diffusion, the chronoamperometric transient would display a CottreU-hke tailing for longer times owing to slow diffusion of CO from the terrace to the active step site. The mathematical treatment supporting this conclusion was given in Koper et al. [2002]. [Pg.163]

Also, under continuous CO oxidation conditions, alkaline media exhibit a much higher activity than acidic media. Markovic and co-workers observed a shift of about 150 mV of the main oxidation wave, and a pre-wave corresponding to CO oxidation at potentials as low as 0.2-0.3 V [Markovic et al., 2002]. Remarkably, the hysteresis that is so prominently observed in the diffusion-controlled CO oxidation wave in acidic media (see Fig. 6.9), is no longer present in alkaline media. Markovic and co-workers also attribute the high activity of alkaline media to a pH-dependent adsorption of OH ds at defect/step sites. [Pg.177]

Interestingly, it has been shown that some adatoms can be selectively deposited on step sites, taking advantage of the enhanced reactivity of these sites. Figure 7.5 shows the voltammogram of a Pt(775) surface in 0.5 M H2SO4. The hard sphere model for... [Pg.223]

Figure 7.5 Cyclic voltammogram of a Pt(775) electrode in 0.5 M H2SO4 solution and a hard sphere model of this surface. Sweep rate 50 mV/s. In the hard sphere model, four atoms forming the (110) step site have been identified in black. Figure 7.5 Cyclic voltammogram of a Pt(775) electrode in 0.5 M H2SO4 solution and a hard sphere model of this surface. Sweep rate 50 mV/s. In the hard sphere model, four atoms forming the (110) step site have been identified in black.
Completely different behavior is observed with S and Se, as shown in Fig. 7.8. With these adatoms, deposition on the terrace starts from the very beginning and no selectivity towards the step is observed. Additionally, deposition of the adatom changes the hydrogen adsorption energy on the (110) step sites, as reflected by the progressive shift of the peak at 0.12 V towards higher potential values. [Pg.225]

Figure 7.8 Restructuring of surface atoms at step sites of a clean surface. Figure 7.8 Restructuring of surface atoms at step sites of a clean surface.
The existence of active sites on surfaces has long been postulated, but confidence in the geometric models of kink and step sites has only been attained in recent years by work on high index surfaces. However, even a lattice structure that is unreconstructed will show a number of random defects, such as vacancies and isolated adatoms, purely as a result of statistical considerations. What has been revealed by the modern techniques described in chapter 2 is the extraordinary mobility of surfaces, particularly at the liquid-solid interface. If the metal atoms can be stabilised by coordination, very remarkable atom mobilities across the terraces are found, with reconstruction on Au(100), for example, taking only minutes to complete at room temperature in chloride-containing electrolytes. It is now clear that the... [Pg.11]

It would be fitting at this stage to define in detail the various carbon species for this review, as often different terms are used in the literature. A representation of the various carbon species is shown in Figure 4.2. Surface carbide or atomic carbon can be defined as isolated carbon atoms with only carbon-metal bonds, resulting from CO dissociation or disproportionation, the latter of which is not favored on cobalt at normal FTS conditions. Recent theoretical and experimental work has indicated that the CO dissociation is preferred at the step sites, so absorbed surface carbide is expected to be located near these sites.44-46... [Pg.54]


See other pages where Step sites is mentioned: [Pg.2748]    [Pg.2749]    [Pg.264]    [Pg.385]    [Pg.675]    [Pg.162]    [Pg.174]    [Pg.175]    [Pg.114]    [Pg.166]    [Pg.174]    [Pg.194]    [Pg.196]    [Pg.225]    [Pg.225]    [Pg.225]    [Pg.229]    [Pg.230]    [Pg.235]    [Pg.237]    [Pg.306]    [Pg.525]    [Pg.77]    [Pg.81]    [Pg.141]    [Pg.70]    [Pg.77]    [Pg.77]    [Pg.418]    [Pg.12]    [Pg.59]    [Pg.104]    [Pg.270]    [Pg.271]    [Pg.305]   
See also in sourсe #XX -- [ Pg.239 , Pg.297 , Pg.298 , Pg.299 , Pg.300 , Pg.302 , Pg.303 , Pg.304 , Pg.305 , Pg.306 ]




SEARCH



© 2024 chempedia.info