Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soybean oxidation

BHA and BHT, which are both fat soluble, are effective ia protecting animal fat from oxidation, and are often added duting the rendering process. Propyl gallate is also effective, but it has limited fat solubiUty, and turns bluish black ia the presence of iron. It is typically used as a synergist ia combination with BHA or BHT. TBHQ is most effective against oxidation ia polyunsaturated vegetable oils (qv), and is often used ia soybean oil (19). [Pg.437]

Polyunsaturated fatty acids in vegetable oils, particularly finolenic esters in soybean oil, are especially sensitive to oxidation. Even a slight degree of oxidation, commonly referred to as flavor reversion, results in undesirable flavors, eg, beany, grassy, painty, or fishy. Oxidation is controlled by the exclusion of metal contaminants, eg, iron and copper addition of metal inactivators such as citric acid minimum exposure to air, protection from light, and selective hydrogenation to decrease the finolenate content to ca 3% (74). Careful quality control is essential for the production of acceptable edible soybean oil products (75). [Pg.302]

Dialkyl esters of 3,3 -thiodipropionic acid (53), cycHc phosphonites such as neopentylphenyl phosphite, derivatives of phosphaphenathrene-lO-oxide (54), secondary aromatic amines, eg, diphenylamine (55), and epoxidi2ed soybean oils (56) are effective stabili2ers for preventing discoloration of cellulose esters during thermal processing. [Pg.252]

Cobalt in Driers for Paints, Inks, and Varnishes. The cobalt soaps, eg, the oleate, naphthenate, resinate, Hnoleate, ethyUiexanoate, synthetic tertiary neodecanoate, and tall oils, are used to accelerate the natural drying process of unsaturated oils such as linseed oil and soybean oil. These oils are esters of unsaturated fatty acids and contain acids such as oleic, linoleic, and eleostearic. On exposure to air for several days a film of the acids convert from Hquid to soHd form by oxidative polymeri2ation. The incorporation of oil-soluble cobalt salts effects this drying process in hours instead of days. Soaps of manganese, lead, cerium, and vanadium are also used as driers, but none are as effective as cobalt (see Drying). [Pg.381]

Many similar hydrocarbon duids such as kerosene and other paraffinic and naphthenic mineral oils and vegetable oils such as linseed oil [8001-26-17, com oil, soybean oil [8001-22-7] peanut oil, tall oil [8000-26-4] and castor oil are used as defoamers. Liquid fatty alcohols, acids and esters from other sources and poly(alkylene oxide) derivatives of oils such as ethoxylated rosin oil [68140-17-0] are also used. Organic phosphates (6), such as tributyl phosphate, are valuable defoamers and have particular utiHty in latex paint appHcations. Another important class of hydrocarbon-based defoamer is the acetylenic glycols (7), such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol which are widely used in water-based coatings, agricultural chemicals, and other areas where excellent wetting is needed. [Pg.463]

Lipoxygenase-Catalyzed Oxidations. Lipoxygenase-1 catalyzes the incorporation of dioxygen into polyunsaturated fatty acids possessing a l(Z),4(Z)-pentadienyi moiety to yield ( ),(Z)-conjugated hydroperoxides. A highly active preparation of the enzyme from soybean is commercially available in purified form. From a practical standpoint it is important to mention that the substrate does not need to be in solution to undergo the oxidation. Indeed, the treatment of 28 g/L of linoleic acid [60-33-3] with 2 mg of the enzyme results in (135)-hydroperoxide of linoleic acid in 80% yield... [Pg.349]

The raw materials for the manufacture of soap, the alkali salts of saturated and unsaturated C10-C20 carboxylic acids, are natural fats and fatty oils, especially tallow oil and other animal fats (lard), coconut oil, palm kernel oil, peanut oil, and even olive oil. In addition, the tall oil fatty acids, which are obtained in the kraft pulping process, are used for soap production. A typical formulation of fats for the manufacture of soap contains 80-90% tallow oil and 10-20% coconut oil [2]. For the manufacture of soft soaps, the potassium salts of fatty acids are used, as are linseed oil, soybean oil, and cottonseed oil acids. High-quality soap can only be produced by high-quality fats, independent of the soap being produced by saponification of the natural fat with caustic soda solution or by neutralization of distilled fatty acids, obtained by hydrolysis of fats, with soda or caustic soda solutions. Fatty acids produced by paraffin wax oxidation are of inferior quality due to a high content of unwanted byproducts. Therefore in industrially developed countries these fatty acids are not used for the manufacture of soap. This now seems to be true as well for the developing countries. [Pg.2]

WEI H, CAO Q AND RAHN R o (1996) Inhibition of UV light- and Fenton reaction-induced oxidative DNA damage by the soybean isoflavone genistein. Carcinogenesis. 17 (1) 73-7. [Pg.221]

Grosch, W. and Laskawy, G., Co-oxidation of carotenes requires one soybean lipoxygenase isoenzyme, Biochim. Biophys. Acta, 575, 439, 1979. [Pg.190]

Phenol, the simplest and industrially more important phenolic compound, is a multifunctional monomer when considered as a substrate for oxidative polymerizations, and hence conventional polymerization catalysts afford insoluble macromolecular products with non-controlled structure. Phenol was subjected to oxidative polymerization using HRP or soybean peroxidase (SBP) as catalyst in an aqueous-dioxane mixture, yielding a polymer consisting of phenylene and oxyphenylene units (Scheme 19). The polymer showed low solubility it was partly soluble in DMF and dimethyl sulfoxide (DMSO) and insoluble in other common organic solvents. [Pg.229]

Figure 2.2 Oxidation of human LDL by lipoxygenase and exposure to copper. The oxidation of human LDL was monitored by the increase in absorbance at 234 nm after the addition of soybean lipoxygenase (LO) at t = 0 min (— and —) followed by the addition of Cu (10 fiM) at t = 90 min to one LO-treated sample (—) and the control (-). Other conditions were exactly as described in Jessup et af. (1991). Figure 2.2 Oxidation of human LDL by lipoxygenase and exposure to copper. The oxidation of human LDL was monitored by the increase in absorbance at 234 nm after the addition of soybean lipoxygenase (LO) at t = 0 min (— and —) followed by the addition of Cu (10 fiM) at t = 90 min to one LO-treated sample (—) and the control (-). Other conditions were exactly as described in Jessup et af. (1991).
Lotan, R., Pebray, H., Cacan, M., Cacan, R., and Sharon, N. (1975) Labeling of soybean agglutinin by oxidation with sodium periodate followed by reduction with [3H] borohydride. J. Biol. Chem. 250, 1955-1957. [Pg.1090]

As mentioned earlier, oxidation of LDL is initiated by free radical attack at the diallylic positions of unsaturated fatty acids. For example, copper- or endothelial cell-initiated LDL oxidation resulted in a large formation of monohydroxy derivatives of linoleic and arachi-donic acids at the early stage of the reaction [175], During the reaction, the amount of these products is diminished, and monohydroxy derivatives of oleic acid appeared. Thus, monohydroxy derivatives of unsaturated acids are the major products of the oxidation of human LDL. Breuer et al. [176] measured cholesterol oxidation products (oxysterols) formed during copper- or soybean lipoxygenase-initiated LDL oxidation. They identified chlolcst-5-cnc-3(3, 4a-diol, cholest-5-ene-3(3, 4(3-diol, and cholestane-3 3, 5a, 6a-triol, which are present in human atherosclerotic plaques. [Pg.798]

Inhibition and stimulation of LOX activity occurs as a rule by a free radical mechanism. Riendeau et al. [8] showed that hydroperoxide activation of 5-LOX is product-specific and can be stimulated by 5-HPETE and hydrogen peroxide. NADPH, FAD, Fe2+ ions, and Fe3+(EDTA) complex markedly increased the formation of oxidized products while NADH and 5-HETE were inhibitory. Jones et al. [9] also demonstrated that another hydroperoxide 13(5)-hydroperoxy-9,ll( , Z)-octadecadienoic acid (13-HPOD) (formed by the oxidation of linoleic acid by soybean LOX) activated the inactive ferrous form of the enzyme. These authors suggested that 13-HPOD attached to LOX and affected its activation through the formation of a protein radical. Werz et al. [10] showed that reactive oxygen species produced by xanthine oxidase, granulocytes, or mitochondria activated 5-LOX in the Epstein Barr virus-transformed B-lymphocytes. [Pg.806]

An important characteristic of mammalian 15-LOX is its capacity to oxidize the esters of unsaturated acid in biological membranes and plasma lipoproteins without their hydrolysis to free acids. Jung et al. [19] found that human leukocyte 15-LOX oxidized phosphatidylcholine at carbon-15 of the AA moiety. Soybean and rabbit reticulocyte 15-LOXs were also active while human leukocyte 5-LOX, rat basophilic leukemia cell 5-LOX, and rabbit platelet 12-LOX were inactive. It was suggested that the oxygenation of phospholipid is a unique property of 15-LOX. However, Murray and Brash [20] showed that rabbit reticulocyte... [Pg.807]

Belkner et al. [32] demonstrated that 15-LOX oxidized preferably LDL cholesterol esters. Even in the presence of free linoleic acid, cholesteryl linoleate continued to be a major LOX substrate. It was also found that the depletion of LDL from a-tocopherol has not prevented the LDL oxidation. This is of a special interest in connection with the role of a-tocopherol in LDL oxidation. As the majority of cholesteryl esters is normally buried in the core of a lipoprotein particle and cannot be directly oxidized by LOX, it has been suggested that LDL oxidation might be initiated by a-tocopheryl radical formed during the oxidation of a-tocopherol [33,34]. Correspondingly, it was concluded that the oxidation of LDL by soybean and recombinant human 15-LOXs may occur by two pathways (a) LDL-free fatty acids are oxidized enzymatically with the formation of a-tocopheryl radical, and (b) the a-tocopheryl-mediated oxidation of cholesteryl esters occurs via a nonenzymatic way. Pro and con proofs related to the prooxidant role of a-tocopherol were considered in Chapter 25 in connection with the study of nonenzymatic lipid oxidation and in Chapter 29 dedicated to antioxidants. It should be stressed that comparison of the possible effects of a-tocopherol and nitric oxide on LDL oxidation does not support importance of a-tocopherol prooxidant activity. It should be mentioned that the above data describing the activity of cholesteryl esters in LDL oxidation are in contradiction with some earlier results. Thus in 1988, Sparrow et al. [35] suggested that the 15-LOX-catalyzed oxidation of LDL is accelerated in the presence of phospholipase A2, i.e., the hydrolysis of cholesterol esters is an important step in LDL oxidation. [Pg.810]

One of numerous examples of LOX-catalyzed cooxidation reactions is the oxidation and demethylation of amino derivatives of aromatic compounds. Oxidation of such compounds as 4-aminobiphenyl, a component of tobacco smoke, phenothiazine tranquillizers, and others is supposed to be the origin of their damaging effects including reproductive toxicity. Thus, LOX-catalyzed cooxidation of phenothiazine derivatives with hydrogen peroxide resulted in the formation of cation radicals [40]. Soybean LOX and human term placenta LOX catalyzed the free radical-mediated cooxidation of 4-aminobiphenyl to toxic intermediates [41]. It has been suggested that demethylation of aminopyrine by soybean LOX is mediated by the cation radicals and neutral radicals [42]. Similarly, soybean and human term placenta LOXs catalyzed N-demethylation of phenothiazines [43] and derivatives of A,A-dimethylaniline [44] and the formation of glutathione conjugate from ethacrynic acid and p-aminophenol [45,46],... [Pg.810]


See other pages where Soybean oxidation is mentioned: [Pg.54]    [Pg.351]    [Pg.3]    [Pg.54]    [Pg.351]    [Pg.3]    [Pg.99]    [Pg.125]    [Pg.135]    [Pg.150]    [Pg.208]    [Pg.99]    [Pg.300]    [Pg.302]    [Pg.438]    [Pg.670]    [Pg.158]    [Pg.9]    [Pg.124]    [Pg.172]    [Pg.194]    [Pg.163]    [Pg.579]    [Pg.416]    [Pg.83]    [Pg.133]    [Pg.22]    [Pg.23]    [Pg.130]    [Pg.141]    [Pg.175]    [Pg.540]    [Pg.805]    [Pg.807]    [Pg.810]    [Pg.811]   
See also in sourсe #XX -- [ Pg.4 , Pg.190 ]




SEARCH



Oxidation soybean oil

Oxidative Quality of Soybean Oil

© 2024 chempedia.info