Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly-alcohols Synthetic

Organic polyesters, obtained either from a diacid and a mono-alcohoi, or from poly-alcohols and a monoacid, or from di-alcohols and a diacid. This class represented 29% of the synthetic base market in France in 1992. [Pg.279]

There are over 400 different commercial alkyd resin formulations based on phthalic anhydride used in the coatings business. Alkyd resins for paints are made by reacting phthalic anhydride with a poly-alcohol (usually from naturally occurring sources rather than synthetic) that contains unreacted double bonds. The paint dries by the resin crosslinking through reaction of the double bonds under the influence of oxygen in the air. [Pg.146]

The primary aim of these experiments was to examine the TPD spectra of a genuine lithium alkyl carbonate formed on the surface of Au(poly) to determine whether the thermal decomposition of this UHV-synthesized material exhibits an m/e = 44 TPD spectra which resembles that observed in the TPD of d6-PC adsorbed on Li/Au(poly). The synthetic pathway employed is based on the sequential condensation of an ultrapurified alcohol (n-butanol, BuOH) onto a Li/ Au(poly) surface followed by exposure to C02 to form the desired alkyl carbonate. [Pg.257]

Synthesis from Poly-alcohols.—We come, now, to that group of mono-saccharoses, the hexose mono-saccharoses, which contains the most important simple sugars which are known, viz., glucose and fructose. The hexoses may be prepared, synthetically, by oxidizing the hexa-hydroxy alcohols, e.g. mannitol, dulcitol, sorbitol, etc. (p. 219). [Pg.339]

R. Gangopadhyay, A. De, Conducting semi-IPN based on polyaniline and crosslinked poly(vinyl alcohol), Synthetic Metals 2002, 132, 21. [Pg.211]

Dichromated Resists. The first compositions widely used as photoresists combine a photosensitive dichromate salt (usually ammonium dichromate) with a water-soluble polymer of biologic origin such as gelatin, egg albumin (proteins), or gum arabic (a starch). Later, synthetic polymers such as poly(vinyl alcohol) also were used (11,12). Irradiation with uv light (X in the range of 360—380 nm using, for example, a carbon arc lamp) leads to photoinitiated oxidation of the polymer and reduction of dichromate to Ct(III). The photoinduced chemistry renders exposed areas insoluble in aqueous developing solutions. The photochemical mechanism of dichromate sensitization of PVA (summarized in Fig. 3) has been studied in detail (13). [Pg.115]

By far the largest volume synthetic alcohol is 2-ethylexanol [104-76-7] CgH gO, used mainly in production of the poly(vinyl chloride) plasticizer bis(2-ethylhexyl) phthalate [117-81-7], commonly called dioctyl phthalate [117-81-7] or DOP (see Plasticizers). A number of other plasticizer... [Pg.454]

Almost all synthetic binders are prepared by an emulsion polymerization process and are suppHed as latexes which consist of 48—52 wt % polymer dispersed in water (101). The largest-volume binder is styrene—butadiene copolymer [9003-55-8] (SBR) latex. Most SBRlatexes are carboxylated, ie, they contain copolymerized acidic monomers. Other latex binders are based on poly(vinyl acetate) [9003-20-7] and on polymers of acrylate esters. Poly(vinyl alcohol) is a water-soluble, synthetic biader which is prepared by the hydrolysis of poly(viayl acetate) (see Latex technology Vinyl polymers). [Pg.22]

Hydroformylation. Hydroformylation of aEyl alcohol is a synthetic route for producing 1,4-butanediol [110-63-4] a raw material for poly(butylene terephthalate), an engineering plastic (qv) many studies on the process have been carried out. [Pg.72]

Other typical pyrotechnic fuels include charcoal, sulfur, boron, siUcon, and synthetic polymers such as poly(vinyl alcohol) and poly(vinyl chloride). Extensive use has been made of natural products such as starches and gums, and the use of these materials continues to be substantial in the fireworks industry. MiUtary pyrotechnics have moved away from the use of natural products due to the inherent variabiUty in these materials depending on climatic conditions during the growth of the plants from which the compounds are derived. [Pg.347]

Poly(vinyl acetate) emulsions can be made with a surfactant alone or with a protective coUoid alone, but the usual practice is to use a combination of the two. Normally, up to 3 wt % stabilizers may be included in the recipe, but when water sensitivity or tack of the wet film is desired, as in some adhesives, more may be included. The most commonly used surfactants are the anionic sulfates and sulfonates, but cationic emulsifiers and nonionics are also suitable. Indeed, some emulsion compounding formulas require the use of cationic or nonionic surfactants for stable formulations. The most commonly used protective coUoids are poly(vinyl alcohol) and hydroxyethyl cellulose, but there are many others, natural and synthetic, which are usable if not preferable for a given appHcation. [Pg.464]

Poly(viayl alcohol) (PVA), a polyhydroxy polymer, is the largest-volume synthetic, water-soluble resin produced in the world. It is commercially manufactured by the hydrolysis of poly(vinyl acetate), because monomeric vinyl alcohol caimot be obtained in quantities and purity that makes polymerisation to poly(vinyl alcohol) feasible (1 3). [Pg.475]

Poly(vinyl butyral), prepared by reacting poly(vinyl alcohol) with -butyraldehyde, finds wide appHcation as the interlayer in safety glass and as an adhesive for hydrophilic surfaces (161). Another example is the reaction of poly(vinyl alcohol) with formaldehyde to form poly(vinyl formal), used in the production of synthetic fibers and sponges (162). [Pg.481]

The fabric is desized after the weaving operation and then passed through a heated water bath to remove all the size. The rate at which this operation can be accompHshed depends to a great degree on solubiUty rate of the poly(vinyl alcohol). Difficulties encountered in completely removing the lubricating wax, usually tallow wax, has led to the development of several wax-free size compositions (303—311). The main component contained in these blends is PVA in combination with a small amount of a synthetic water-soluble lubricant. [Pg.488]

It may also be mentioned that a number of commercial polymers are produced by chemical modification of other polymers, either natural or synthetic. Examples are cellulose acetate from the naturally occurring polymer cellulose, poly(vinyl alcohol) from polyfvinyl acetate) and chlorosulphonated polyethylene (Hypalon) from polyethylene. [Pg.23]

In addition to its water solubility poly(vinyl pyrrolidone) is soluble in a very wide range of materials, including aliphatic halogenated hydrocarbons (methylene dichloride, chloroform), many monohydric and polyhdric alcohols (methanol, ethanol, ethylene glycol), some ketones (acetyl acetone) and lactones (a-butyrolactone), lower aliphatic acids (glacial acetic acid) and the nitro-paraffins. The polymer is also compatible with a wide range of other synthetic polymers, with gums and with plasticisers. [Pg.475]

The polymers are of interest as water-soluble packaging films for a wide variety of domestic and industrial materials. (Additional advantages of the poly(ethylene oxide)s are that they remain dry to the feel at high humidities and may be heat sealed.) The materials are also of use in a number of solution application such as textile sizes and thickening agents. As a water-soluble film they are competitive with poly(vinyl alcohol) whereas in their solution applications they meet competition from many longer established natural and synthetic water-soluble polymers. [Pg.547]

A number of synthetic polymers that are widely used commercially are soluble in water. These tend to have very polar functional groups and include such polymers as poly(vinyl alcohol), poly(acrylic acid), and the modified celluloses. [Pg.75]

Nylon was the first commercial polymer to make a substantial impact on the textile industry, but polyesters now comprise the largest segment of the market for synthetic fibers. In fact, polyesters account for 40% of the more than 4 billion kilograms of synthetic fibers produced in the United States each year. The leading polyester, by far, is poly(ethylene terephthalate), or PET. This polymer is made from terephthalic acid and ethylene glycol in an acid -alcohol condensation reaction ... [Pg.910]

Thioethers lack the capacity to neutralize positive charge and display weak donor properties. Consequently, they do not readily displace strong donor solvents (water) or strongly bonding anions (such as halides) from the coordination sphere. As a consequence, many thioether complex syntheses employ aprotic or alcoholic solvents and precursor complexes with weakly bound solvents (such as DMSO or acetone) or anions (such as C+3S03 ). Despite the synthetic challenges, a wide range of complexes has been reported, particularly with the cyclic poly-thioethers, where the macrocyclic effect overcomes many of the above difficulties. [Pg.50]

Compared with wool and cotton, the scouring procedures for synthetic fibres are relatively simple since these fibres contain fewer impurities. Most of these have at least some degree of water solubility the most important are sizes and lubricants. The major sizes used are poly (vinyl alcohol), carboxymethylcellulose and poly (acrylic acid), all of which are completely or partially water-soluble. Sometimes aliphatic polyesters are used. [Pg.94]

Polybasic carboxylic hydroxy and amino acid aided synthetic routes directed towards obtaining mixed inorganic materials, especially for battery and fuel cell applications, are overviewed. It has been shown that, in spite of enormous number of papers on the subject, significant efforts should be undertaken in order to understand the basic principles of these routes. Possible influence of the structure of reactants employed in the process (acids, poly hydroxy alcohols, metal salts) is put forward, and some directions of future work in the field are outlined. [Pg.500]

Furthermore, the role of a poly hydroxy alcohol, like ethylene glycol, seems ambiguous. As mentioned above, it is believed that the presence of ethylene glycol favours esterification of chelates. IR and NMR studies performed in [7] do not present solid proofs of such a belief. Synthetic routines with and without alcohols look the same, and the absence of alcohol seem not to influence the properties of precursors and final products. Some evidence exists enabling one to consider the esterification idea liable to more than one interpretation it has been reported in [4] that the presence of ethylene glycol does not influence the morphology of oxides. [Pg.504]

A strain of yeast and a strain of bacterium were co-immobilized to fabricate a biochemical oxygen demand (BOD) sensor based on sol-gel derived composite materials97. This novel type of biosensor was developed for water monitoring and was used to determine the BOD values of OECD synthetic wastewater, domestic wastewater, and lake waters. The microorganisms Trichosporon cutaneum and Bacillus subtilis were coimmobilized in the sol-gel composite material, which was composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). [Pg.375]

Many polymers have been studied for their usefulness in producing pharmacologically active complexes with proteins or drugs. Synthetic and natural polymers such as polysaccharides, poly(L-lysine) and other poly(amino acids), poly(vinyl alcohols), polyvinylpyrrolidinones, poly(acrylic acid) derivatives, various polyurethanes, and polyphosphazenes have been coupled to with a diversity of substances to explore their properties (Duncan and Kopecek, 1984 Braatz et al., 1993). Copolymer preparations of two monomers also have been tried (Nathan et al., 1993). [Pg.936]


See other pages where Poly-alcohols Synthetic is mentioned: [Pg.44]    [Pg.472]    [Pg.229]    [Pg.230]    [Pg.482]    [Pg.487]    [Pg.522]    [Pg.149]    [Pg.152]    [Pg.490]    [Pg.100]    [Pg.823]    [Pg.108]    [Pg.168]    [Pg.125]    [Pg.140]    [Pg.499]    [Pg.17]    [Pg.111]    [Pg.465]    [Pg.144]    [Pg.196]    [Pg.557]    [Pg.66]    [Pg.167]   
See also in sourсe #XX -- [ Pg.402 ]




SEARCH



Poly alcohol

Synthetic alcohol

© 2024 chempedia.info