Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material dependence

The presence of defects and impurities is unavoidable. They are created during tire growtli or penetrate into tlie material during tlie processing. For example, in a crystal grown from tire melt, impurities come from tire cmcible and tire ambient, and are present in tire source material. Depending on factors such as tire pressure, tire pull rate and temperature gradients, tire crystal may be rich in vacancies or self-interstitials (and tlieir precipitates). [Pg.2884]

We noted above that the presence of monomer with a functionality greater than 2 results in branched polymer chains. This in turn produces a three-dimensional network of polymer under certain circumstances. The solubility and mechanical behavior of such materials depend critically on whether the extent of polymerization is above or below the threshold for the formation of this network. The threshold is described as the gel point, since the reaction mixture sets up or gels at this point. We have previously introduced the term thermosetting to describe these cross-linked polymeric materials. Because their mechanical properties are largely unaffected by temperature variations-in contrast to thermoplastic materials which become more fluid on heating-step-growth polymers that exceed the gel point are widely used as engineering materials. [Pg.314]

This brief overview of the types of fibrous materials is intended to indicate the broad range of materials that can be produced from fibers. Since the properties of fibrous materials depend both on the properties of the fibers themselves and on the spatial arrangement of the fibers in the assembly, a given type of fiber may be used in many different end products, and similarly a given end product can be produced from different fiber types. [Pg.267]

Assemblies of small disks are rotated in a planetary movement around a central screw conveyor. The disks are mounted on six hoUow axles and the axles revolve on overhanging bearings from the gearbox at one end of the vessel where they are driven, via a drive shaft, by an electric motor. The filtrate is collected from the disks via the hoUow shafts and a filter valve into a large collecting pipe. The hoUow shafts also collect the water and air from the dewatering process, in another part of the rotational cycle. The number of disks mounted on the shafts can be adjusted for different materials, depending on the required capacity and the cake thickness to be used. [Pg.406]

The flavor chemist is responsible for the basic knowledge of sensory and appHcation properties of each of this large number of raw materials the large number of possible combinations of these items to produce specifically flavored finished compounds is readily apparent. It is not uncommon to develop a flavor that combines essential oils, plant extractive, fmit juices, and synthetics. The choice of materials depends on type of product, conditions of manufacture, labeling, and intended use. [Pg.15]

The properties of leather-like materials depend on the polymer used for substrate and coating layer. Feel, hand, and resistance to grain break are affected by the constmction. The polymers and constmctions of leather-like materials are shown in Table 1. Physical properties of leather and leather-like materials are shown in Table 2. [Pg.92]

Oxidation of Carbohydrates. Oxahc acid is prepared by the oxidation of carbohydrates (7—9), such as glucose, sucrose, starch, dextrin, molasses, etc, with nitric acid (qv). The choice of the carbohydrate raw material depends on availabihty, economics, and process operating characteristics. Among the various raw materials considered, com starch (or starch in general) and sugar are the most commonly available. Eor example, tapioka starch is the Brazihan raw material, and sugar is used in India. [Pg.457]

Other typical pyrotechnic fuels include charcoal, sulfur, boron, siUcon, and synthetic polymers such as poly(vinyl alcohol) and poly(vinyl chloride). Extensive use has been made of natural products such as starches and gums, and the use of these materials continues to be substantial in the fireworks industry. MiUtary pyrotechnics have moved away from the use of natural products due to the inherent variabiUty in these materials depending on climatic conditions during the growth of the plants from which the compounds are derived. [Pg.347]

GVD Coatings. As in PVD, the stmcture of the deposited material depends on the temperature and supersaturation, roughly as pictured in Figure 8 (12). In the case of CVD, however, the effective supersaturation, ie, the local effective concentration in the gas phase of the materials to be deposited, relative to its equiUbrium concentration, depends not only on concentration, but on temperature. The reaction is thermally activated. Because the effective supersaturation for thermally activated reactions increases with temperature, the opposing tendencies can lead in some cases to a reversal of the sequence of crystalline forms Hsted in Figure 8, as temperature is increased (12). [Pg.49]

These relationships predict the binding Hquid content for wet agglomeration with an accuracy of only ca 30%. The Hquid content required to agglomerate a particular feed material depends, for example, on the interfacial properties of the system (45). Typical values of moisture content required for hailing a variety of materials are listed in Table 2. Very accurate information on the optimum Hquid content to agglomerate a particular feed material must be obtained from experimental tests. [Pg.112]

Electrochemistry and Kinetics. The electrochemistry of the nickel—iron battery and the crystal stmctures of the active materials depends on the method of preparation of the material, degree of discharge, the age (Life cycle), concentration of electrolyte, and type and degree of additives, particularly the presence of lithium and cobalt. A simplified equation representing the charge—discharge cycle can be given as ... [Pg.552]

Wear. Ceramics generally exhibit excellent wear properties. Wear is deterrnined by a ceramic s friction and adhesion behavior, and occurs by two mechanisms adhesive wear and abrasive wear (43). Adhesive wear occurs when interfacial adhesion produces a localized Kj when the body on one side of the interface is moved relative to the other. If the strength of either of the materials is lower than the interfacial shear strength, fracture occurs. Lubricants (see Lubricants and lubrication) minimize adhesion between adj acent surfaces by providing an interlayer that shears easily. Abrasive wear occurs when one material is softer than the other. Particles originating in the harder material are introduced into the interface between the two materials and plow into and remove material from the softer material (52). Hard particles from extrinsic sources can also cause abrasive wear, and wear may occur in both of the materials depending on the hardness of the particle. [Pg.326]

The purity of the cerium-containing materials depends on the appHcation as indicated in Table 3, and purity can mean not only percentage of cerium content but also absence of unwanted components. For some uses, eg, gasoline production catalysts, the lanthanides are often used in the natural-ratio without separation and source Hterature for these appHcations often does not explicitly mention cerium. Conversely, particulady in ferrous metallurgy, cerium is often assumed to be synonymous with rare-earth or lanthanide and these terms are used somewhat interchangeably. [Pg.369]

The stabihty of crack extension in such materials depends on the rate of change of the appHed driving force to that of the fracture resistance, equation 4. [Pg.50]

Water content indirectly affects other lens characteristics. Water evaporation from the lens can result in a dry eye sensation and subsequent desiccative erosion of the cornea. Clinical studies have shown the incidence of corneal erosion as a result of lens desiccation to be a material-dependent and water-content-dependent phenomenon (25,26). The nature of water and sodium ions in hydrogels has been studied primarily by nmr and thermal techniques (27,28). An empirical relationship between water mobility in contact lens polymers and desiccative staining has been proposed (29). [Pg.101]

Poly(ethylene-i (9-vinyl alcohol) is made by saponification of ethylene—vinyl acetate copolymers. The properties of these materials depend on the amount of vinyl alcohol present in the copolymer. High vinyl alcohol content results in more hydrophilic materials possessing higher densities, stiffness, and moduh. They are used commercially as barrier resins for packaging. Important producers include Du Pont and EVALCA (74) (see Barrier polymers). [Pg.185]

The value of equilibrium moisture content, for many materials, depends on the direction in which equilibrium is approached. A different value is reached when a wet material loses moisture by desorption, as in drying, from that obtained when a diy material gains it by adsorption. For diying calculations the desorption values are preferred. In the general case, the equilibrum moisture content reached by losing moisture is higher than tnat reached by adsorbing it. [Pg.1182]

The feed must be nonabrasive with a hardness of 1.5 or less. The miU is capable of taking 2-cm ( A-in) feed material, depending on the size of the feed throat, and reducing it to a product substantiaUy aU able to pass a No. 200 sieve. For producing materials in the fine-size range, it may be operated in conjunction with external air classifiers. Such an arrangement is shown in Figs. 20-12 or 20-42. A number of machines have internal air classifiers. [Pg.1859]

Gland plate Three to four mm of MS or non-magnetic material, depending upon the number, sizes and type of cables (single core or multicore) it has to carry (Figure 13.33). [Pg.372]

Constitutive relation An equation that relates the initial state to the final state of a material undergoing shock compression. This equation is a property of the material and distinguishes one material from another. In general it can be rate-dependent. It is combined with the jump conditions to yield the Hugoniot curve which is also material-dependent. The equation of state of a material is a constitutive equation for which the initial and final states are in thermodynamic equilibrium, and there are no rate-dependent variables. [Pg.40]

If we accept the assumption that the elastic wave can be treated to good aproximation as a mathematical discontinuity, then the stress decay at the elastic wave front is given by (A. 15) and (A. 16) in terms of the material-dependent and amplitude-dependent wave speeds c, (the isentropic longitudinal elastic sound speed), U (the finite-amplitude elastic shock velocity), and Cfi [(A.9)]. In general, all three wave velocities are different. We know, for example, that... [Pg.262]

There is considerable literature on material imperfections and their relation to the failure process. Typically, these theories are material dependent flaws are idealized as penny-shaped cracks, spherical pores, or other regular geometries, and their distribution in size, orientation, and spatial extent is specified. The tensile stress at which fracture initiates at a flaw depends on material properties and geometry of the flaw, and scales with the size of the flaw (Carroll and Holt, 1972a, b Curran et al., 1977 Davison et al., 1977). In thermally activated fracture processes, one or more specific mechanisms are considered, and the fracture activation rate at a specified tensile-stress level follows from the stress dependence of the Boltzmann factor (Zlatin and Ioffe, 1973). [Pg.279]

It has been shown that the ultimate tensile strength, Su, for brittle materials depends upon the size of the speeimen and will deerease with inereasing dimensions, sinee the probability of having weak spots is inereased. This is termed the size effeet. This size effeet was investigated by Weibull (1951) who suggested a statistieal fune-tion, the Weibull distribution, deseribing the number and distribution of these flaws. The relationship below models the size effeet for deterministie values of Su (Timoshenko, 1966). [Pg.155]

Typically a few pm but material dependent mono-layer sensitivity with synchrotron radiation... [Pg.16]

Material dependent, but "3% in a two phase mixture with synchrotron radiation can be -0.1%... [Pg.16]

The X-ray penetration depth in a material depends on the angle of incidence. It increases from a few tens of A near the total reflection region to several jim at large... [Pg.341]

All three techniques probe 500 A to 1 pm or so in depth for opaque materials, depending on the penetration depth of the incident light. For transparent materials, essentially bulk properties are measured by PL and Modulation Spectroscopy. All three techniques can be performed in ambient atmosphere, since visible light is used both as incident probe and signal. [Pg.371]

As earlier discussed, the dominant factor in the near-surface region is the particle detection system. For a typical silicon surface barrier detector (15-keV FWHM resolution for Fle ions), this translates to a few hundred A for protons and 100— 150 A for Fle in most targets. When y rays induced by incident heavy ions are the detected species (as in FI profiling), resolutions in the near-surface region may be on order of tens of A. The exact value for depth resolution in a particular material depends on the rate of energy loss of incident ions in that material and therefore upon its composition and density. [Pg.688]

Figure 8.15. The total flow (A) during moulding of a thermosetting material depends on the ease of flow (B) and the time taken for the material to get to such a stage that it is incapable of flow (C). Because of this, total flow goes through a maximum with temperature... Figure 8.15. The total flow (A) during moulding of a thermosetting material depends on the ease of flow (B) and the time taken for the material to get to such a stage that it is incapable of flow (C). Because of this, total flow goes through a maximum with temperature...

See other pages where Material dependence is mentioned: [Pg.372]    [Pg.1266]    [Pg.1886]    [Pg.2880]    [Pg.236]    [Pg.533]    [Pg.131]    [Pg.200]    [Pg.147]    [Pg.161]    [Pg.266]    [Pg.407]    [Pg.524]    [Pg.311]    [Pg.546]    [Pg.497]    [Pg.519]    [Pg.247]    [Pg.162]    [Pg.125]    [Pg.36]    [Pg.418]   
See also in sourсe #XX -- [ Pg.550 , Pg.556 , Pg.565 ]




SEARCH



Amorphous pharmaceutical materials temperature dependence

Composite dispersed materials Concentration dependence

Crystalline materials, dependence

Dependence of the Conductivity on Geometry, Material and Process Condition

Difference method with temperature dependent material

Electron material dependence

Heat with temperature dependent material

Magnetic materials temperature dependence

Material dependence of the Schottky barrier

Material temperature dependent

Material-dependent attenuation coefficient

Material-dependent method

Noncartesian coordinates. Temperature dependent material properties

Surface-enhanced Raman spectroscopy material dependence

Temperature-dependent material property

Time-dependent properties materials

© 2024 chempedia.info