Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Octylphenol production

For commercial octylphenol products the synthesis is usually performed with the starting material 1,1,3,3-tetramethylbutane, thus resulting in t-OPs with only a single major compound for each possible ortho, meta (minor), or para-substituted) phenyl positional isomer. High-resolution chromatograms of OPs are therefore much less complicated than those of NPs (compare Fig. 2.1.4(a)-(c)), although the presence of 11 minor constituents in parai t-octylj-phenol has been reported [126]. [Pg.95]

Typically, soHd stabilizers utilize natural saturated fatty acid ligands with chain lengths of Cg—C g. Ziac stearate [557-05-1/, ziac neodecanoate [27253-29-8] calcium stearate [1592-23-0] barium stearate [6865-35-6] and cadmium laurate [2605-44-9] are some examples. To complete the package, the soHd products also contain other soHd additives such as polyols, antioxidants, and lubricants. Liquid stabilizers can make use of metal soaps of oleic acid, tall oil acids, 2-ethyl-hexanoic acid, octylphenol, and nonylphenol. Barium bis(nonylphenate) [41157-58-8] ziac 2-ethyIhexanoate [136-53-8], cadmium 2-ethyIhexanoate [2420-98-6], and overbased barium tallate [68855-79-8] are normally used ia the Hquid formulations along with solubilizers such as plasticizers, phosphites, and/or epoxidized oils. The majority of the Hquid barium—cadmium formulations rely on barium nonylphenate as the source of that metal. There are even some mixed metal stabilizers suppHed as pastes. The U.S. FDA approved calcium—zinc stabilizers are good examples because they contain a mixture of calcium stearate and ziac stearate suspended ia epoxidized soya oil. Table 4 shows examples of typical mixed metal stabilizers. [Pg.550]

Another important apphcation for 4-/ f2 -octylphenol is ia the production of phenoHc resias. Novolak resias based oa 4-/ f2 -octylpheaol are widely used ia the tire iadustry as tackifiers. The tackiaess of these resias biads the many parts of an automobile tire prior to final vulcanization. A specialty use for novolak resias based oa 4-/ f2 -octylpheaol is the productioa of a ziacated resia, which is formulated as a dispersioa ia water and coated onto paper ia combination with eacapsulated leuco dyes to yield carbonless copy paper (see Microencapsulation). Pressure from writing bursts the encapsulated leuco dye, which is converted from its colorless form to its colored form by the ncated resin (53). Novolak resias based oa 4-/ f2 -octylpheaol are also used ia the productioa of specialty printing inks. [Pg.68]

Another use of 4-/ f2 octylphenol is ia the productioa of uv stabilizers. 4-/ f2 -Octylpheaol reacts with sulfur dichloride to yield the thio-hisphenol derivative, which thea reacts with nickel acetate to form 2,2 -thiobis(4-/ f2 octylphenolate)-A/-butylamiQe nickel [14516-71 -3]. This type of stabilizer is widely used in the production of outdoor carpeting based on polypropylene fibers. Nickel compounds give a green discoloration which limits their apphcatioas. A second class of uv stabilizers based on the benzotriazole stmcture. 2-(2 -hydroxy-5 -/ f2 octylphenyl)benzotriazole [3147-75-9] is produced from 4-/ i -octylphenol (55). [Pg.68]

The octylphenol condensate is used as an additive to lubricating oils and surface-active agents. Other uses of dimer are amination to octylamine and octyldiphenylamine, used in mbber processing hydroformylation to nonyl alcohol for phthalate production and carboxylation via Koch synthesis to yield acids in formulating paint driers (see Drying). [Pg.372]

Non-ionic surfactants used in detergents, paints, herbicides, pesticides and plastics. Breakdown products, such as nonylphenol and octylphenol, are found in sewage and industrial efffuents Products of combustion of many materials Widely used as plasticisers for PVC. Common environmental pollutants... [Pg.14]

APEOs are used in domestic and industrial applications. They are applied as detergents, emulsifiers, wetting agents, dispersants or solubilisers. APEO derived from nonylphenol (NP), i.e. nonylphenol ethoxylates (NPEOs) comprises about 80% of the total market volume, while octylphenol-derived surfactants (OPEOs) account for 15-20%. Because of the persistence and toxicity of some degradation intermediates, their use has been reduced in several countries either through voluntary bans by the chemical industry or by legal regulations. However, excellent properties in combination with comparably low production costs hampers their complete replacement with other more environmentally acceptable alternatives. [Pg.46]

Dissolved concentrations of non-ionic surfactant in estuaries are lower than those found in rivers, with reported differences of around one order of magnitude [4,11,25]. However, in some cases local sources in the estuary are the cause of high surfactant levels [9,11]. Concentrations of octylphenol ethoxylates usually amount to levels about one order of magnitude below those of the NP derivatives, reflecting the production volumes of both classes of compounds. [Pg.773]

Alkylphenol Ethoxylates (APE). The hydrophobes of most commercial APE are made by reacting phenol with either propylene trimer or diisobutylene to form nonylphenol or octylphenol. These products contain an aromatic moiety and extensive branching in their alkyl chains. It has been shown that APE biodegrade more slowly and less extensively than LPAE (3.15-20). The difference is more pronounced when the treatment system is operating under stress conditions such as low temperatures and high surfactant loadings. [Pg.97]

The first reactions concerned (Simons and Archer, 27) alkylation of benzene with propylene to form isopropylbenzene, with isobutene to form f-butylbenzene and di-f-butylbenzene, and trimethylethylene to form amylbenzene. Later on (Simons and Archer, 28) studied these and other reactions in more detail and showed that high yields could be obtained and that the product was not contaminated with tars or other obnoxious impurities. It was shown that the products obtained with trimethylethylene were mono- and di-f-amylbenzene, that phenyl-pentane resulted from the use of pentene-2, and that cyclohexene produced cyclohexylbenzene. Cinnamic acid reacted with benzene (Simons and Archer, 29) to form /3-phenylpropionic acid and allyl benzene reacted with benzene to form 1,2-diphenylpropane. It is interesting to note that although allyl alcohol reacted with benzene to form 1,2-diphenylpropane, the intermediate in the reaction, allylbenzene, was isolated and identified. This shows that in this case the hydroxyl reacted at a more rapid rate than the double bond. Both di- and triisobutylene reacted with phenol (Simons and Archer, 30) at 0°, when using hydrogen fluoride containing only relatively small quantities of water, to form f-butyl-benzene, but diisobutylene with 70% hydrogen fluoride produced p-f-octylphenol. Cyclohexene reacted with toluene to form cyclohexyl-toluene and octene-1 rapidly reacted with toluene to form 2-octyltoluene (Simons and Basler, 31). [Pg.209]

N.M Jardine G. Harries, USP 3510370 (1970) CA 73, l6965m(1970) (Aqueous expl slurry contg ethylene oxide condensate sensitizer, such as a mixt of fine AN 69, the condensation product of octylphenol with... [Pg.616]

Phenolic compounds are used in commercial or consumer products or building materials (Rudel et al., 2001), especially ethoxylated alkylphenols of octylphenol and nonylphenol, which are widely used in surfactants (Ying, Williams and Kookana, 2002). They are known as endocrine disrupting compounds (EDC) as they bear hormonally active properties. Other EDCs found indoors include phthal-ates (Section 11.2.7), certain pesticides, organotin compounds (Section 11.2.5) and polybrominated diphenyl ethers (Section 11.2.8) (Rudel et al., 2001, 2003). [Pg.240]

Alkylphenol. Alkylphenol is a common surfactant intermediate used to produce alkylphenol ethoxylates. Phenol reacts with an olefin thermally without a catalyst but with relatively poor yields. Catalysts for the reaction include sulfuric acid p-toluene sulfonic acid (PTSA), strong acid resins, and boron trifluoride (BF3). Of these, strong acid resins and BF3 are mostly widely used for the production of surfactant-grade alkylphenols. The most common alkylphenols are octylphenol, nonylphenol, and dodecylphe-nol. Mono nonylphenol (MNP) is by far the most common hydrophobe. It is produced by the alkylation of phenol with nonene under acid conditions. All commercially produced MNP is made with nonene based on propylene trimer. Because of the skeletal rearrangements that occur during propylene oligomerization, MNP is a complex mixture of branched isomers. [Pg.1722]

Concerns over their potential to function as endocrine disruptors led to a Japanese study on the levels of alkylphenols in 60 rubber products. Such compounds are used as starting materials in the manufacture of a number of mbber additives, particularly oligomeric phenolic antioxidants. The work concentrated on four compounds p-/er/.butyl phenol (PTBP), p-/er/.octylphenol... [Pg.290]

Alkylphenols (APs), particularly nonylphenols (NPs) and to a lesser extent octylphenols (OPs), are extensively used for the production of alkylphenol polyethoxylates (NPEOs), a class of non-ionic surfactants that has been largely employed for more than 40 years in textile and paper processing and in the manufacture of paints, coatings, pesticides, industrial detergents, cosmetics and spermicidal preparations, as well as various cleaning products. NPs are also used in the manufacturing processes of many plastics and as monomers in the production of phenol/formaldehyde resins. Smaller quantities of NPs are employed in the production of tri(4-nonylphenyl) phosphite as an anti-oxidant for rubber and in the manufacture of lubricating oil additives. [Pg.153]

Hanioka, N., H. Jinno, Y.S. Chung, T. Tanaka-Kagawa, T. Nishimura and M. Ando. Inhibition of rat hepatic cytochrome P450 activities by biodegradation products 4-tcrt-octylphenol ethoxylate. Xenobiotica 29 873-883, 1999. [Pg.167]


See other pages where Octylphenol production is mentioned: [Pg.66]    [Pg.68]    [Pg.68]    [Pg.95]    [Pg.100]    [Pg.373]    [Pg.24]    [Pg.76]    [Pg.402]    [Pg.123]    [Pg.148]    [Pg.90]    [Pg.115]    [Pg.752]    [Pg.822]    [Pg.861]    [Pg.862]    [Pg.957]    [Pg.390]    [Pg.329]    [Pg.426]    [Pg.232]    [Pg.36]    [Pg.307]    [Pg.4]    [Pg.7]    [Pg.7]    [Pg.19]    [Pg.1348]    [Pg.319]   
See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Octylphenol

Octylphenols

© 2024 chempedia.info