Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron activation analysis instrumental techniques

Battelle has developed instrumental neutron activation analysis (INAA) techniques which permit very sensitive and accurate multielement analysis of approximately 40 elements in coal and fly ash. These techniques, which will be described in this work, form the basis for extensive environmental studies of the effluent from coal-powered generating facilities and other pollution sources. [Pg.128]

It is very important to note that the metallic impurities in CNTs are the important factor in inducing significant toxic responses. Therefore, a quantitative measurement of the concentration of metal impurities in CNTs is key, although this is very difficult. Recently, neutron activation analysis (NAA) technique as a non-destructive standard method has been used to quantitatively analyse the metal impurities in CNTs, and ICP-MS is regarded as a practical analytical method. In the absence of a true reference material for CNTs, the NAA method can provide the best estimate of the true value of metallic impurities in CNTs, while ICP-MS is a desktop instrumental... [Pg.383]

Atomic absorption spectroscopy of VPD solutions (VPD-AAS) and instrumental neutron activation analysis (INAA) offer similar detection limits for metallic impurities with silicon substrates. The main advantage of TXRF, compared to VPD-AAS, is its multielement capability AAS is a sequential technique that requires a specific lamp to detect each element. Furthermore, the problem of blank values is of little importance with TXRF because no handling of the analytical solution is involved. On the other hand, adequately sensitive detection of sodium is possible only by using VPD-AAS. INAA is basically a bulk analysis technique, while TXRF is sensitive only to the surface. In addition, TXRF is fast, with an typical analysis time of 1000 s turn-around times for INAA are on the order of weeks. Gallium arsenide surfaces can be analyzed neither by AAS nor by INAA. [Pg.355]

A modem technique for nitrogen detn is known as fast neutron activation analysis. Materials such as RDX are exposed to a high density fast neutron flux which converts the 14N content of the sample into unstable 13N. The N is detd by measuring the 13 N produced by the 14N (n, 2n) 13N reaction. This technique is extremely sensitive, but requires specialized instrumentation (Refs 44, 51 61)... [Pg.302]

The apphed pretreatment techniques were digestion with a combination of acids in the pressurized or atmospheric mode, programmed dry ashing, microwave digestion and irradiation with thermal neutrons. The analytical methods of final determination, at least four different for each element, covered all modern plasma techniques, various AAS modes, voltammetry, instrumental and radiochemical neutron activation analysis and isotope dilution MS. Each participating laboratory was requested to make a minimum of five independent rephcate determinations of each element on at least two different bottles on different days. Moreover, a series of different steps was undertaken in order to ensure that no substantial systematic errors were left undetected. [Pg.65]

The chemistry of rare earth elements makes them particularly useful in studies of marine geochemistry [637]. But the determination of rare earths in seawater at ultratrace levels has always been a difficult task. Of the various methods applied, instrumental neutron activation analysis and isotope dilution mass spectrometry were the main techniques used for the determination of rare earths in seawater. However, sample preparation is tedious and large amounts of water are required in neutron activation analysis. In addition, the method can only offer relatively low sample throughputs and some rare earths cannot be determined. The main drawbacks of isotopic dilution mass spectrometry are that it is time-consuming and expensive, and monoisotopic elements cannot be determined as well. [Pg.214]

WVGES has not had analytical laboratory facilities since the 1970 s so contract geochemical analyses are a necessity. After considering a variety of sources for analytical work including both university and government laboratories, we decided to use a commercial lab, located in Ontario, which specializes in analyses for the mineral exploration industry (they have since expanded into the environmental field as well). For the sake of consistency, each sample is analyzed using the same set of techniques, a combination of Instrumental Neutron Activation Analysis (INAA) and Selective Extraction-Ignition Coupled Plasma spectroscopy that yield results for 49 elements - Au, Ag, As, Ba, Br, Ca, Co, Cr, Cs, Fe, Hf, Hg, Ir, Mo, Na, Ni, Rb, Sb, Sc, Se, Sn, Sr, Ta, Th, U, W, Zn, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Cu, Pb, Mn, Cd,... [Pg.410]

Bakraji, E. H., Othman, I., Sarhil, A., and Al-Somel, N. (2002). Application of instrumental neutron activation analysis and multivariate statistical methods to archaeological Syrian ceramics. Journal of Trace and Microprobe Techniques 20 57-68. [Pg.351]

Moreau, J.-F. and Hancock, R. G. V. (1996). Chrono-cultural technique based on the instrumental neutron activation analysis of copper-based artifacts from the contact period of northeastern North America. In Archaeological Chemistry organic, inorganic and biochemical analysis, ed. Orna, M. V., ACS Symposium Series 625, Washington, DC, American Chemical Society, pp. 64-82. [Pg.376]

An introductory manual that explains the basic concepts of chemistry behind scientific analytical techniques and that reviews their application to archaeology. It explains key terminology, outlines the procedures to be followed in order to produce good data, and describes the function of the basic instrumentation required to carry out those procedures. The manual contains chapters on the basic chemistry and physics necessary to understand the techniques used in analytical chemistry, with more detailed chapters on atomic absorption, inductively coupled plasma emission spectroscopy, neutron activation analysis, X-ray fluorescence, electron microscopy, infrared and Raman spectroscopy, and mass spectrometry. Each chapter describes the operation of the instruments, some hints on the practicalities, and a review of the application of the technique to archaeology, including some case studies. With guides to further reading on the topic, it is an essential tool for practitioners, researchers, and advanced students alike. [Pg.407]

Cadmium in acidified aqueous solution may be analyzed at trace levels by various instrumental techniques such as flame and furnace atomic absorption, and ICP emission spectrophotometry. Cadmium in solid matrices is extracted into aqueous phase by digestion with nitric acid prior to analysis. A much lower detection level may be obtained by ICP-mass spectrometry. Other instrumental techniques to analyze this metal include neutron activation analysis and anodic stripping voltammetry. Cadmium also may be measured in aqueous matrices by colorimetry. Cadmium ions react with dithizone to form a pink-red color that can be extracted with chloroform. The absorbance of the solution is measured by a spectrophotometer and the concentration is determined from a standard calibration curve (APHA, AWWA and WEF. 1999. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, DC American Public Health Association). The metal in the solid phase may be determined nondestructively by x-ray fluorescence or diffraction techniques. [Pg.143]

Chromium metal may be analyzed by various instrumental techniques including flame and furnace AA spectrophotometry (at 357.9 nm) ICP emission spectrometry (at 267.72 or 206.15 nm), x-ray fluorescence and x-ray diffraction techniques, neutron activation analysis, and colorimetry. [Pg.218]

Iron metal can be analyzed by x-ray spectroscopy, flame- and furnace atomic absorption, and ICP atomic emission spectroscopy at trace concentration levels. Other instrumental techniques include ICP-mass spectrometry for extreme low detection level and neutron activation analysis. [Pg.414]

The element may be analyzed by several instrumental techniques including atomic absorption and emission spectrophotometry, ICP-MS, x-ray fluorescence, and neutron activation analysis. [Pg.446]

Palladium metal is digested in aqua regia, evaporated to near dryness. This is followed by addition of concentrated HCl and distdled water and the solution is warmed until dissolution is complete. The solution is aspirated directly into an air-acetylene flame. Palladium is detected by flame-AA spectrophotometry. Other instrumental techniques such as ICP/AES, x-ray fluorescence, and neutron activation analysis are used also. [Pg.688]

Tin can be measured readily at trace concentrations in aqueous solutions by flame or furnace atomic absorption spectrophotometry. For flame AA measurement, air-acetylene flame is suitable. The metal can be identified accurately at 224.6 nm. Tin also can be measured by other instrumental techniques such as ICP-AES, ICP/MS and neutron activation analysis. [Pg.937]

Tungsten may be analyzed by flame AA and ICP-AES. For sucb analyses, tbe metal, its compounds, or alloys are solubilized by digestion with aqua regia, nitric acid-perchloric acid, or other acid combinations and diluted. Other instrumental techniques such as x-ray fluorescence and neutron activation analysis also are applicable. [Pg.953]

With analytical methods such as x-ray fluorescence (XRF), proton-induced x-ray emission (PIXE), and instrumental neutron activation analysis (INAA), many metals can be simultaneously analyzed without destroying the sample matrix. Of these, XRF and PEXE have good sensitivity and are frequently used to analyze nickel in environmental samples containing low levels of nickel such as rain, snow, and air (Hansson et al. 1988 Landsberger et al. 1983 Schroeder et al. 1987 Wiersema et al. 1984). The Texas Air Control Board, which uses XRF in its network of air monitors, reported a mean minimum detectable value of 6 ng nickel/m (Wiersema et al. 1984). A detection limit of 30 ng/L was obtained using PIXE with a nonselective preconcentration step (Hansson et al. 1988). In these techniques, the sample (e.g., air particulates collected on a filter) is irradiated with a source of x-ray photons or protons. The excited atoms emit their own characteristic energy spectrum, which is detected with an x-ray detector and multichannel analyzer. INAA and neutron activation analysis (NAA) with prior nickel separation and concentration have poor sensitivity and are rarely used (Schroeder et al. 1987 Stoeppler 1984). [Pg.210]

We have operated the University of Washington MKV impactor as a low-pressure impactor to provide for chemical analysis, four discretely sized fly-ash fractions in the sub-half-micrometer- diameter aerosol accumulation region. Instrumental neutron activation analysis provided the sensitivity to determine accurately the concentrations of 28 major, minor, and trace elements with sufficient precision to reveal fine structure in the elemental distributions that might be missed by techniques of lesser accuracy and precision. [Pg.184]

The concentration levels of most trace metals and metalloids lie below 1000 pg P . Therefore, the classical methods of analysis do not have the required sensitivity. Among the instrumental techniques that have been extensively used for the analysis of biological materials include, atomic absorption spectrometry, plasma emission spectrometry, anodic stripping voltammetry and neutron activation analysis. [Pg.163]

Increased environmental concern has accelerated research on the analysis of trace elements in fuels in many university and governmental facilities. Because instruments such as mass spectrometers and nuclear reactors for neutron activation analysis are available, much of this research uses sophisticated instrumentation and techniques. However, the wet chemistry laboratory is still the only available source of chemical... [Pg.31]

Until now, little attention has been given to the analysis of ancient copper alloys with LA-ICP-MS. This type of material is usually analyzed with fast or instrumental neutron activation analysis (FNAA or INAA), particle induced X-ray emission (PIXE), X-ray fluorescence (XRF), inductively coupled plasma-atomic emission spectrometry or inductively coupled plasma-atomic absorption spectrometry (ICP-AES or ICP-AAS). Some of these techniques are destructive and involve extensive sample preparation, some measure only surface compositions, and some require access to a cyclotron or a reactor. LA-ICP-MS is riot affected by any of these inconveniences. We propose here an analytical protocol for copper alloys using LA-ICP-MS and present its application to the study of Matisse bronze sculptures. [Pg.337]

Trace elemental analysis of ancient ceramics has been proven a very useful tool for tracing the circulation of this material. Instrumental neutron activation analysis (INAA) was for years the analytical technique of choice to measure the composition of ceramics because of the large number of elements it could determine and its good sensitivity. Lately, a few publications have shown that laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) could provide similar results as INAA more quickly and at lower cost. A protocol has been developed to determine 51 elements using LA-ICP-MS and tested it on Wari period ceramics previously analyzed using INAA. We show how INAA and LA-ICP-MS analysis lead to the same conclusion in terms of sample groupings. [Pg.349]

Trace element studies of ceramics have been undertaken for the purpose of locating source regions for archaeological materials since the 1960s. While a number of techniques have been used for this purpose, by far the most common and most effective has been instrumental neutron activation analysis (INAA), largely due to its excellent sensitivity, precision, accuracy and the large number of elements it can measure simultaneously. [Pg.350]

Neutron Activation Spectrometry. Another instrumental technique which has applicability to a wide range of elements is neutron activation analysis. In this method the sample (which could be orange juice without any prior sample treatment) is irradiated with a strong neutron flux. The elements of analytical interest are thus converted to unstable isotopes which decay with characteristic energies and thus measurement of the intensities results in analytical values for the elements of interest. There are some serious drawbacks to this method, however. The matrix can cause severe background effects especially when the sample contains large amounts of an element, like potassium, which is the situation with orange juice. In this event tedious chemical separations must be carried out to achieve adequate selectivity, accuracy... [Pg.376]

A wide array of laboratory techniques and instrumentation is used in forensic studies. This includes ultraviolet, infrared, and visible spectrophotometry neutron activation analysis gas chromatography and mass spectrophotometry high pressure liquid chromatography and atomic absorption spectrophotometry. The techniques and instrumentation chosen depend on the type of sample or substance to be examined. [Pg.110]


See other pages where Neutron activation analysis instrumental techniques is mentioned: [Pg.126]    [Pg.141]    [Pg.33]    [Pg.63]    [Pg.66]    [Pg.69]    [Pg.554]    [Pg.101]    [Pg.406]    [Pg.17]    [Pg.61]    [Pg.722]    [Pg.1096]    [Pg.529]    [Pg.70]    [Pg.335]    [Pg.101]    [Pg.319]    [Pg.352]    [Pg.422]    [Pg.468]    [Pg.277]    [Pg.196]    [Pg.109]   
See also in sourсe #XX -- [ Pg.465 ]




SEARCH



Analysis techniques

Instrument neutron activation analysis

Instrumental analysis

Instrumental neutron activation

Instrumental neutron activation analysis

Instrumental techniques

Instrumentation techniques

Neutron activation

Neutron activation analysi

Neutron activation analysis

Neutron analysis

Neutron instrumental

Neutron instrumentation

Neutron techniques

© 2024 chempedia.info