Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trace level

Ketkar and co-workers developed a new analytical method for measuring trace levels of atmospheric gases.The analysis of a sample containing 40.0 parts per thousand (ppt) 2-chloroethylsulfide yielded the following results... [Pg.99]

Scale of Operation The scale of operation for precipitation gravimetry is governed by the sensitivity of the balance and the availability of sample. To achieve an accuracy of 0.1% using an analytical balance with a sensitivity of 0.1 mg, the precipitate must weigh at least 100 mg. As a consequence, precipitation gravimetry is usually limited to major or minor analytes, and macro or meso samples (see Figure 3.6 in Chapter 3). The analysis of trace level analytes or micro samples usually requires a microanalytical balance. [Pg.254]

Another area where controlled-potential coulometry has found application is in nuclear chemistry, in which elements such as uranium and polonium can be determined at trace levels. Eor example, microgram quantities of uranium in a medium of H2SO4 can be determined by reducing U(VI) to U(IV) at a mercury working electrode. [Pg.502]

This somewhat lengthy experiment provides a thorough introduction to the use of GG for the analysis of trace-level environmental pollutants. Sediment samples are extracted by sonicating with 3 X 100-mL portions of 1 1 acetone hexane. The extracts are then filtered and concentrated before bringing to a final volume of 10 mL. Samples are analyzed with a capillary column using a stationary phase of 5% phenylmethyl silicone, a splitless injection, and an EGD detector. [Pg.611]

Noncnzymc-Catalyzcd Reactions The variable-time method has also been used to determine the concentration of nonenzymatic catalysts. Because a trace amount of catalyst can substantially enhance a reaction s rate, a kinetic determination of a catalyst s concentration is capable of providing an excellent detection limit. One of the most commonly used reactions is the reduction of H2O2 by reducing agents, such as thiosulfate, iodide, and hydroquinone. These reactions are catalyzed by trace levels of selected metal ions. Eor example the reduction of H2O2 by U... [Pg.637]

Acrylonitrile will polymerize violendy in the absence of oxygen if initiated by heat, light, pressure, peroxide, or strong acids and bases. It is unstable in the presence of bromine, ammonia, amines, and copper or copper alloys. Neat acrylonitrile is generally stabilized against polymerization with trace levels of hydroquinone monomethyl ether and water. [Pg.185]

Anhydrous, monomeric formaldehyde is not available commercially. The pure, dry gas is relatively stable at 80—100°C but slowly polymerizes at lower temperatures. Traces of polar impurities such as acids, alkahes, and water greatly accelerate the polymerization. When Hquid formaldehyde is warmed to room temperature in a sealed ampul, it polymerizes rapidly with evolution of heat (63 kj /mol or 15.05 kcal/mol). Uncatalyzed decomposition is very slow below 300°C extrapolation of kinetic data (32) to 400°C indicates that the rate of decomposition is ca 0.44%/min at 101 kPa (1 atm). The main products ate CO and H2. Metals such as platinum (33), copper (34), and chromia and alumina (35) also catalyze the formation of methanol, methyl formate, formic acid, carbon dioxide, and methane. Trace levels of formaldehyde found in urban atmospheres are readily photo-oxidized to carbon dioxide the half-life ranges from 35—50 minutes (36). [Pg.491]

Monomers containing reactive functional groups ia the ester moiety exhibit the toxicological profile of the functional group and should be considered on an iadividual basis. Consideration of methods of monomer manufacture may be appropriate, as by-products, even at trace levels, may affect the observed biological response. [Pg.255]

As is indicated in Figure 4, saturates contribute less to the vacuum gas oil (VGO) than the aromatics, but more than the polars present at percentage, rather than trace, levels. VGO itself is occasionally used as a heating oil but most commonly it is processed by catalytic cracking to produce naphtha or by extraction to yield lubricant oils. [Pg.170]

The devitrification rate is extremely sensitive to both surface and bulk impurities, especially alkah. Increased alkah levels tend to increase the devitrification rate and lower the temperature at which the maximum rate occurs. For example, a bulk level of 0.32 wt % soda increases the maximum devitrification rate 20—30 times and lowers the temperature of maximum devitrification to approximately 1400°C (101). The impurity effect is present even at trace levels (<50 ppm) and can be enhanced with the addition of alumina. The devitrification rate varies inversely with the ratio of alumina-to-alkah metal oxide. The effect is a consequence of the fact that these impurities lower glass viscosity (102). [Pg.502]

From a toxicological and physiological point of view, the determination of very small amounts of tellurium is becoming increasingly important. Interest is environmental and human health has promoted development in analytical techniques and methods for the trace and ultra trace levels (see Trace AND RESIDUE ANALYSIS). [Pg.388]

Emission spectroscopy is used for lower concentrations and trace levels. Methods, as outlined in ASTM procedures (87), include zirconium in aluminum and aluminum alloys, ceramics, sand, magnesium alloys, and titanium. [Pg.432]

Instrumental Quantitative Analysis. Methods such as x-ray spectroscopy, oaes, and naa do not necessarily require pretreatment of samples to soluble forms. Only reUable and verified standards are needed. Other instmmental methods that can be used to determine a wide range of chromium concentrations are atomic absorption spectroscopy (aas), flame photometry, icap-aes, and direct current plasma—atomic emission spectroscopy (dcp-aes). These methods caimot distinguish the oxidation states of chromium, and speciation at trace levels usually requires a previous wet-chemical separation. However, the instmmental methods are preferred over (3)-diphenylcarbazide for trace chromium concentrations, because of the difficulty of oxidizing very small quantities of Cr(III). [Pg.141]

Bromo-2-pyridyla2o)-5-diethylamiQophenol (5-Br-PADAP) is a very sensitive reagent for certain metals and methods for cobalt have been developed (23). Nitroso-naphthol is an effective precipitant for cobalt(III) and is used in its gravimetric determination (24,25). Atomic absorption spectroscopy (26,27), x-ray fluorescence, polarography, and atomic emission spectroscopy are specific and sensitive methods for trace level cobalt analysis (see... [Pg.379]

Colorimetric procedures are often used to determine copper in trace amounts. Extraction of copper using diethyldithiocarbamate can be quite selective (60,62), but the method using dithhone is preferred because of its greater sensitivity and selectivity (50—52). Atomic absorption spectroscopy, atomic emission spectroscopy, x-ray fluorescence, and polargraphy are specific and sensitive methods for the deterrnination of trace level copper. [Pg.256]

Environmentally Available Reactants. Under normal conditions ethyleneamines are considered to be thermally stable molecules. However, they are sufftciendy reactive that upon exposure to adventitious water, carbon dioxide, nitrogen oxides, and oxygen, trace levels of by-products can form and increased color usually results. [Pg.43]

Ethylene oxide is sold as a high purity chemical, with typical specifications shown ia Table 14. This purity is so high that only impurities are specified. There is normally no assay specification. Proper sampling techniques are critical to avoid personal exposure and prevent contamination of the sample with trace levels of water. A complete review and description of analytical methods for pure ethylene oxide is given ia Reference 228. [Pg.463]

The determination of heavy metals at trace levels is important in the field of environmental analysis. This problem can be solved by the help of highly selective sorbents. [Pg.274]

In recent decades the development of preconcentration steps to be implemented prior to analytical determinations of trace level compounds has been explored in considerable depth. With a view to eliminating or at least minimising the use of organic solvents used in conventional liquid-liquid extraction, other methodologies have been developed, such as membrane extraction, solid-phase extraction, solid-phase microextraction, etc. [Pg.422]

Main use Measurement of composition and of trace-level impu-... [Pg.40]

Spark Source Mass Spectrometry (SSMS) is a method of trace level analysis—less than 1 part per million atomic (ppma)—in which a solid material, in the form of two conducting electrodes, is vaporized and ionized by a high-voltage radio frequency spark in vacuum. The ions produced from the sample electrodes are accelerated into a mass spectrometer, separated according to their mass-to-charge ratio, and collected for qualitative identification and quantitative analysis. [Pg.45]

The analytical techniques covered in this chapter are typically used to measure trace-level elemental or molecular contaminants or dopants on surfaces, in thin films or bulk materials, or at interfaces. Several are also capable of providing quantitative measurements of major and minor components, though other analytical techniques, such as XRF, RBS, and EPMA, are more commonly used because of their better accuracy and reproducibility. Eight of the analytical techniques covered in this chapter use mass spectrometry to detect the trace-level components, while the ninth uses optical emission. All the techniques are destructive, involving the removal of some material from the sample, but many different methods are employed to remove material and introduce it into the analyzer. [Pg.527]

The most common application of dynamic SIMS is depth profiling elemental dopants and contaminants in materials at trace levels in areas as small as 10 pm in diameter. SIMS provides little or no chemical or molecular information because of the violent sputtering process. SIMS provides a measurement of the elemental impurity as a function of depth with detection limits in the ppm—ppt range. Quantification requires the use of standards and is complicated by changes in the chemistry of the sample in surface and interface regions (matrix efiects). Therefore, SIMS is almost never used to quantitadvely analyze materials for which standards have not been carefiilly prepared. The depth resoludon of SIMS is typically between 20 A and 300 A, and depends upon the analytical conditions and the sample type. SIMS is also used to measure bulk impurities (no depth resoludon) in a variety of materials with detection limits in the ppb-ppt range. [Pg.528]

Static SIMS is labeled a trace analytical technique because of the very small volume of material (top monolayer) on which the analysis is performed. Static SIMS can also be used to perform chemical mapping by measuring characteristic molecules and fiagment ions in imaging mode. Unlike dynamic SIMS, static SIMS is not used to depth profile or to measure elemental impurities at trace levels. [Pg.528]


See other pages where Trace level is mentioned: [Pg.182]    [Pg.265]    [Pg.368]    [Pg.616]    [Pg.639]    [Pg.764]    [Pg.447]    [Pg.46]    [Pg.72]    [Pg.168]    [Pg.445]    [Pg.177]    [Pg.280]    [Pg.397]    [Pg.554]    [Pg.60]    [Pg.134]    [Pg.171]    [Pg.308]    [Pg.393]    [Pg.462]    [Pg.106]    [Pg.386]    [Pg.1530]    [Pg.1539]    [Pg.518]    [Pg.529]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Catalysis trace-level

Impurities, trace level

Impurities, trace level structural identification

Intermediates trace-level

Optically Selective Nanosensors for Trace-Level Toxic Ions

Organic compounds trace level identification

Organic contaminants trace levels

Trace Anions in Samples Containing High Levels of Chloride or Sulfate

Trace level analysis

Trace level extraction

Trace levels, instrumental analytical methods

© 2024 chempedia.info