Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Myristic fatty acid

M. is used for manufacture of - soaps, isopropyl myristate (- fatty acids esters) and m5tristyl alcohol. [Pg.195]

Deodorants mask and reduce odor through the use of antimicrobial agents, e. g., triclosan (2,4,4 -trichloro-2 hydroxydiphenyl ether), chloihexidine [l,6-di-(4 chlorophenyl-biguanido) hexan], fame-sol (3,7,1 l-trimethyl-2,6,10-dodecatrien-l-ol) or mixtures, such as triethyl citrate (- citric acid) and butylhydroxytoluene (BFIT). They also contain oils, such as isopropyl myristate (- fatty acid esters), and - fragrances. D. are sold as roll-ons, aerosols and sticks, based on sodium stearate as the gelling agent for either - ethanol, - sorbitol or 1,2-propanediol. [Pg.258]

Concrete. Hydrocarbon extracts of plant tissue, concretes are usually soHd to semisoHd waxy masses often containing higher fatty acids such as lauric, myristic, palmitic, and stearic as well as many of the nonvolatiles present in absolutes. [Pg.296]

Many primary fatty amides which are available from various manufacturers are Hsted in Table 3. In 1986 approximately 55,000 metric tons of amides and bisamides were produced world wide (58), the majority of which are bisamides, followed in volume by primary amides. Most of these products are shipped in sohd form in bag or dmm quantities. Major producers of primary fatty amides are Akzo, Glyco, Humko, and Sherex. Bisamides are produced by Akzo, Milacron, and Syntex. There are over 100 producers of alkanolamides in the world, most of which are small specialized manufacturers to a specific industry. GAP, Henkel, Sherex, and Witco are among the principal producers. The most widely used alkanolamides are the Ai,Ai-bis(2-hydroxyethyl) fatty amides, mostly produced from middle-cut coco fatty acids (6% capryflc, 7% capric, 51% lauric, 19% myristic, 9% palmitic, and 2% stearic acids). An estimated 77,000 metric tons of alkanolamide was produced worldwide in 1986 (59). [Pg.184]

Four columns are needed to produce the desired products. Considering the Sharp Distillation Sequencing heuristics, heuristic (/) does not apply, as there is more than one product in this mixture. Fatty acids are moderately corrosive, but none is particularly more so than the others, so heuristic (2) does not apply. The most volatile product, the caproic and capryflc mixture, is a small (10 mol %) fraction of the feed, so heuristic (3) does not apply. The least volatile product, the oleic—stearic acids, is 27% of the feed, but is not nearly as large as the capric—lauric acid product, so heuristic (4) does not apply. The spht between lauric and myristic acids is closest to equimolar (55 45) and is easy. Therefore, by heuristic (5) it should be performed first. The boiling point list implies that the distillate of the first column contains caproic, capryflc, capric, and lauric acids. This stream requires only one further separation, which by heuristic (/) is between the caproic—capryflc acids and capric—lauric acids. [Pg.445]

The sohd soaps are prepared from cadmium chloride solution by precipitation with sodium salts of the fatty acids. Cadmium laurate [2605-44-9] Cd(C22H2402)2, cadmium stearate [2223-93-0] cadmium palmitate [6427-86-7] and cadmium myristate [10196-67-5] ... [Pg.397]

Distillation. Most fatty acids are distilled to produce high quaHty products having exceUent color and a low level of impurities. Distillation removes odor bodies and low boiling unsaponifiable material in a light ends or heads fraction, and higher boiling material such as polymerized material, triglycerides, color bodies, and heavy decomposition products are removed as a bottoms or pitch fraction. The middle fractions sometimes can be used as is, or they can be fractionated (separated) into relatively pure materials such as lauric, myristic, palmitic, and stearic acids. [Pg.91]

Fig. 1 Fluorescence scan of a fatty acid mixture with 500 ng substance per chromatogram zone. Arachidic acid (I), stearic acid (2), palmitic acid (3), myristic acid (4), lauric acid (5). Fig. 1 Fluorescence scan of a fatty acid mixture with 500 ng substance per chromatogram zone. Arachidic acid (I), stearic acid (2), palmitic acid (3), myristic acid (4), lauric acid (5).
Although vegetable oils usually contain a higher proportion of nnsatnrated fatty acids than do animal oils and fats, several plant oils are actually high in saturated fats. Palm oil is low in polyunsaturated fatty acids and particularly high in (saturated) palmitic acid (whence the name palmitic). Coconut oil is particularly high in lanric and myristic acids (both saturated) and contains very few nnsatnrated fatty acids. [Pg.241]

A variety of cellular and viral proteins contain fatty acids covalently bound via ester linkages to the side chains of cysteine and sometimes to serine or threonine residues within a polypeptide chain (Figure 9.18). This type of fatty acyl chain linkage has a broader fatty acid specificity than A myristoylation. Myristate, palmitate, stearate, and oleate can all be esterified in this way, with the Cjg and Cjg chain lengths being most commonly found. Proteins anchored to membranes via fatty acyl thioesters include G-protein-coupled receptors, the surface glycoproteins of several viruses, and the transferrin receptor protein. [Pg.276]

Myristoylation is the post-translational addition of the 14-carbon fatty acid myristate to the N-terminal glycine of proteins via an amide link. Myristoylation of proteins helps to anchor them to membranes. [Pg.800]

Most of the technically produced a-sulfo fatty esters are prepared from unbranched saturated fatty acid esters that are derived from 8 22 carboxylic acids and Cj-C3 alcohols. In particular the C12 (lauric), C14 (myristic), C16 (palmitic), and C18 (stearic) acids are interesting because the ester sulfonates... [Pg.467]

Fujiwara et al. studied the precipitation phase boundary diagrams of the sodium salts of a-sulfonated myristic and palmitic acid methyl esters in the presence of calcium ions [61]. The time dependency of the precipitation showed that the calcium salts have an extremely slow crystallization rate at room temperatures. This is the reason for the good hardness tolerance of the a-sulfonated fatty acid methyl esters. [Pg.481]

A soap-based powder can be produced in combination with ester sulfonates. Thirty-five percent of a sodium soap mixture (5% lauric acid, 5% myristic acid, 52% palmitic acid, 21% stearic acid, 12% oleic acid, and 5% linoleic acid) is mixed with 15% sodium a-sulfo palm oil fatty acid methyl ester, 3% lauric acid ethoxylate, 5% sodium silicate, 17% sodium carbonate, 20% Na2S04- 10H2O, and 5% water [79]. [Pg.488]

Another aspect of the interaction of lipids and proteins is that some proteins are anchored to one leaflet or another of the bilayer by covalent linkages to certain lipids. Palmitate and myristate are fatty acids involved in such linkages to specific proteins. A number of other proteins (see Chapter 47) are linked to glycophos-phatidylinositol (GPI) strucmres. [Pg.419]

Laurie, myristic, palmitic, and stearic fatty acids make up most of the saturated fatty acids found in fats. Oleic acid, linoleic acid, and linolenic acid are the most abundant unsaturated fatty acids found in oils. [Pg.189]

Soaps are composed of sodium salts of various fatty acids. These acids include those with the general structure CH3-(CH2) -COOH where n = 6 (caprylic acid), 8 (capric acid), 10 (lauric acid), 12 (myristic acid), 14 (palmitic acid), and 16 (stearic acid). Oleic acid (CH3-(CH2)7-CH=CH-(CH2)7-COOH) and linoleic acid (CH3-(CH2)4-CH=CH- H2-CH=CH-(CH2)7-COOH) are also common soap ingredients. These sodium salts readily dissolve in water, but other metal ions such as Ca2+ and Mg2+ form precipitates with the fatty acid anions. For example, the dissolution of the sodium salt of lauric acid and the subsequent formation of a precipitate of the lauric acid anion with calcium ion is given by... [Pg.54]

The slow water removal is obvious within the synthesis of, for example, myristyl myristate determining the total reaction time. In a stirred-tank reactor it takes 24 h to reach a conversion of 99.6% and in a fixed-bed reactor 14 h. Therefore, a new synthesis platform (Figure 4.11) which also enables conversion of highly viscous polyols and fatty acids from renewable resources to ester-based surfactants was designed. It is used by Evonik on a pilot scale, outperforming conventional methods, such as stirred-tank or fixed-bed reactors. In contrast to the setups introduced before, conversion of >99.6% is already obtained after 5.5 h in the bubble column reactor [44-47]. [Pg.90]

Specific chain length fatty acids could be produced in two ways. One is through the action of a thioester hydrolase that interacts with fatty acid synthetase to produce fatty acids shorter in length. Aphids produce myristic acid (14 carbons) and a specific thioester hydrolase releases the fatty acid from fatty acid synthetase after 6 additions of malonyl-CoA. If the hydrolase is not present then the fatty acid synthetase produces stearic acid [27]. A specific thioester hydrolase was ruled out in the biosynthesis of moth sex pheromones because labeling studies showed that longer chain length fatty acids were incorporated into shorter chain length pheromone components [22,28]. [Pg.105]

The nomenclature for associating individual fatty acid groups with particular phosphodig-lyceride derivatives is straightforward. For instance, a phosphatidic acid (PA) derivative which contains two myristic acid chains is commonly called dimyristoyl phosphatidic acid (DMPA). Likewise, a PC derivative containing two palmitate chains is called dipalmitoyl phosphatidyl choline (DPPC). Other phosphodiglyceride derivatives are similarly named. [Pg.866]

Fatty acids have also been converted to difunctional monomers for polyanhydride synthesis by dimerizing the unsaturated erucic or oleic acid to form branched monomers. These monomers are collectively referred to as fatty acid dimers and the polymers are referred to as poly(fatty acid dimer) (PFAD). PFAD (erucic acid dimer) was synthesized by Domb and Maniar (1993) via melt polycondensation and was a liquid at room temperature. Desiring to increase the hydrophobicity of aliphatic polyanhydrides such as PSA without adding aromaticity to the monomers (and thereby increasing the melting point), Teomim and Domb (1999) and Krasko et al. (2002) have synthesized fatty acid terminated PSA. Octanoic, lauric, myristic, stearic, ricinoleic, oleic, linoleic, and lithocholic acid acetate anhydrides were added to the melt polycondensation reactions to obtain the desired terminations. As desired, a dramatic reduction in the erosion rate was obtained (Krasko et al., 2002 Teomim and Domb, 1999). [Pg.178]

It is, therefore, clearly concluded from Figures 9-11 that in the case of conventional fatty acids such as myristic, palmitic, stearic and so on, the crystalline or amorphous phase of monolayer completely depends on the relative magnitude of Tsp to Tm of the monolayer, being independent of the magnitude of surface pressure. The fatty acid monolayers do not show any pressure-induced crystallization during compression of the monolayer on the water surface. The crystalline and amorphous monolayers are schematically summarized in Figure 12. [Pg.22]

TLC spots with marker reveal the presence of free fatty acids (FFA), diglyceride (DG), monoglyceride (MG) but negligible amount of TG. GCMS of fatty acid— methyl esters (FAME) from lion mane presented evidence for fatty acids ranging from C9-C24 (Figs. 5.3- 5.6). Low volatility molecules like nonanedioic acid (Fig. 5.3), tridecanoic acid (Fig. 5.4), 12-methyl tridecanoic acid were also present in lion hair lipids. In addition fatty acids such as myristic, pentadecanoic, palmitic, heptanoic, stearic and octadecenoic acids (Fig. 5.5) have also been detected. Erucic... [Pg.63]

Figure 11.1 Structures of commonly occurring saturated fatty acids (i) myristic acid, Ci4 o (ii) palmitic acid, C s-.o (iii) stearic acid, Ci8 0. Figure 11.1 Structures of commonly occurring saturated fatty acids (i) myristic acid, Ci4 o (ii) palmitic acid, C s-.o (iii) stearic acid, Ci8 0.
They are also known to respond to chemical and physicochemical cues. Ulva com-pressa spores are stimulated to settle on surfaces coated with several fatty acids, in particular myristic acid (Callow and Callow 1998). This is almost certainly because of chemoattraction of the spores by the fatty acids (Callow and Callow 1998) and is probably a chemotactic response (M. Callow, personal communication). [Pg.302]

Unlike iNOS and nNOS, the eNOS protein is post-translationally modified by the attachment of fatty acids, myristate or palmitate. This modification is important because the fatty acids help to attach the enzyme, in an inactive form, to the inner face of plasma membrane of endothelial cells or platelets. Several mechanisms serve to release eNOS from its membrane bound state and thus activate the enzyme. [Pg.134]

The traditional major source for the nonionic surfactant industry is fatty acid triglycerides from both animal and vegetable sources as the saturated or unsaturated acids. The saturated acids include lauric acid (w-dodecanoic), myristic acid (n-tetradecanoic), palmitic acid ( -hexadecanoic),and stearic acid (n-octadecanoic). The unsaturated acids include oleic acid (Z-9-octadecenoic) and linoleic acid (Z,Z-9,12-octadecadienoic). Of the 200 non-ionic surfactants... [Pg.51]


See other pages where Myristic fatty acid is mentioned: [Pg.317]    [Pg.630]    [Pg.65]    [Pg.406]    [Pg.317]    [Pg.630]    [Pg.65]    [Pg.406]    [Pg.268]    [Pg.78]    [Pg.91]    [Pg.505]    [Pg.112]    [Pg.203]    [Pg.266]    [Pg.9]    [Pg.866]    [Pg.26]    [Pg.44]    [Pg.15]    [Pg.16]    [Pg.18]    [Pg.84]    [Pg.7]    [Pg.304]   
See also in sourсe #XX -- [ Pg.404 ]




SEARCH



Myristate

Myristates

Myristic

Myristic acid

© 2024 chempedia.info