Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate of crystallization

While the exponent n characterizes the shape of crystallization curves, in equation (6.22), the rate parameter k characterizes the position on the [Pg.201]

Although this study did not include the effect of copolymer composition, it seems reasonable to expect that the rate of crystallization will vary inversely with the PS content in the copolymer. [Pg.203]


By cooling the solution in a freezing mixture (ice and salt, ice and calcium chloride, or solid carbon dioxide and ether). It must be borne in mind that the rate of crystal formation is inversely proportional to the temperature cooling to very low temperatures may render the mass... [Pg.129]

This intricate mode of crystallization requires more time to accomplish than, say, the entry of small ions into growing salt crystals. This, coupled with low chain mobility due to viscous effects, makes the rate of crystallization slow and accounts in part for the fact that with rapid cooling-called quenching-the temperature drops below T without crystallization. [Pg.206]

The fundamental equilibrium relationships we have discussed in the last sections are undoubtedly satisfied to the extent possible in polymer crystallization, but this possibility is limited by kinetic considerations. To make sense of the latter, both the mechanisms for crystallization and experimental rates of crystallization need to be examined. [Pg.219]

In spite of these obstacles, crystallization does occur and the rate at which it develops can be measured. The following derivation will illustrate how the rates of nucleation and growth combine to give the net rate of crystallization. The theory we shall develop assumes a specific picture of the crystallization process. The assumptions of the model and some comments on their applicability follow ... [Pg.220]

As noted above, not all techniques which provide information regarding crystallinity are useful to follow the rate of crystallization. In addition to sufficient sensitivity to monitor small changes, the method must be rapid and suitable for isothermal regulation, quite possibly over a range of different temperatures. Specific volume measurements are especially convenient for this purpose. We shall continue our discussion using specific volume as the experimental method. [Pg.229]

From the lengths of the arrows drawn in Fig. 4.8b, estimate the change in time scale which will produce the same effect on the rate of crystallization as changing the temperature from 130 to 128°C. Do the same for a temperature change from 126 to 128°C. [Pg.232]

At HOY speeds, the rate of increase in orientation levels off but the rate of crystallization increases dramatically. Air drag and inertial contributions to the threadline stress become large. Under these conditions, crystallization occurs very rapidly over a small filament length and a phenomenon called neck-draw occurs (68,75,76). The molecular stmcture is stable, fiber tensde strength is adequate for many uses, thermal shrinkage is low, and dye rates are higher than traditional slow speed spun, drawn, and heat-set products (77). [Pg.330]

Because of the capacity to tailor select polymer properties by varying the ratio of two or more components, copolymers have found significant commercial appHcation in several product areas. In fiber-spinning, ie, with copolymers such as nylon-6 in nylon-6,6 or the reverse, where the second component is present in low (<10%) concentration, as well as in other comonomers with nylon-6,6 or nylon-6, the copolymers are often used to control the effect of sphemUtes by decreasing their number and probably their size and the rate of crystallization (190). At higher ratios, the semicrystalline polyamides become optically clear, amorphous polymers which find appHcations in packaging and barrier resins markets (191). [Pg.238]

PEN film for audio- and videotape and various electronic appHcations and blow molded PEN containers for hot-fill appHcations are already being marketed in Japan. NDA is unlikely to ever become as inexpensive as terephthaUc acid but novel NDA-based polyesters will become available if a market need exists. One example could be the experimental polyester PBN (Celanese Corp.) this is the NDA analogue of PBT, poly(l,4-butylene naphthalene-2,6-dicarboxylate) [28779-82-0]. It has a high rate of crystallization, faster even than that of PBT, and its combination of physical properties is weU-suited for injection molding. [Pg.293]

Crystallization. Raw natural mbber may freeze or crystallize during transit or prolonged storage, particularly at subzero temperatures. The mbber then becomes hard, inelastic, and usually much paler in color. This phenomenon is reversible and must be differentiated from storage hardening. The rate of crystallization is temperature-dependent and is most rapid at —26° C. Once at this temperature, natural mbber attains its maximum crystallinity within hours, and this maximum is no more than 30% of the total mbber. [Pg.268]

Ammonium tetraborate tetrahydrate is prepared by crystallization from an aqueous solution of boric acid and ammonia having a B202 (NH4)20 ratio of 1.8 2.1. Ammonium pentaborate is similarly produced from an aqueous solution of boric acid and ammonia having a B202 (NH4)20 ratio of 5. Supersaturated solutions are easily formed and the rate of crystallization is proportional to the extent of supersaturation (130). A process for the production... [Pg.206]

Determination of Crystallization Kinetics. Under steady-state conditions, the total number production rate of crystals in a perfectly mixed crystallizer is identical to the nucleation rate, B. Accordingly,... [Pg.349]

The polymer type influences several properties of solvent-borne CR adhesives, mainly the molecular weight and rate of crystallization. [Pg.594]

Neoprene WRT, extremely low rate of crystallization Neoprene W, medium rate of erystal-lization Neoprene WHV, fast rate of crystallization Neoprene AD30, extremely fast rate of erystallization. [Pg.595]

The properties of the solvent-bome CR adhesives depend on the molecular weight, degree of branching and rate of crystallization of the polymer. The ability of polychloroprene adhesives to crystallize is unique as compared to other elastomers. The higher the crystallization rate, the faster the adhesive strength development. [Pg.670]

Growth rates of crystals under satisfactory conditions are in the range of 0.1-... [Pg.5]

Second, the molecular orientation of the fiber and the prepolymer matrix is important. The rate of crystal nucleation at the fiber-matrix interface depends on the orientation of matrix molecules just prior to their change of phase from liquid to solid. Thus, surface-nucleated morphologies are likely to dominate the matrix stmcture. [Pg.85]

Fig. 2b. The appearance of two crystal forms shows that the protein in the membrane exists in equilibrium between the protomeric aj8 unit and oligomeric (aj8>2 forms. The high rate of crystal formation of the protein in vanadate solution shows that transition to the E2 form reduces the difference in free energy required for self association of the protein. This vanadate-method for crystallization has been very reproducible [34-36] and it also leads to crystalline arrays of Ca-ATPase in sarcoplasmic reticulum [37] and H,K-ATPase from stomach mucosa [38]. [Pg.5]

C The solvation rate must exceed the rate of crystallization. [Pg.30]

Silica glass is formed when molten Si02 is cooled rapidly. It experiences slow crystallization. Will the rate of crystallization be higher at room temperature or at 1000 °C ... [Pg.38]

Crystallization involves formation of a solid product from a homogeneous liquid mixture. Often, crystallization is required as the product is in solid form. The reverse process of crystallization is dispersion of a solid in a solvent, termed dissolution. The dispersed solid that goes into solution is the solute. As dissolution proceeds, the concentration of the solute increases. Given enough time at fixed conditions, the solute will eventually dissolve up to a maximum solubility where the rate of dissolution equals the rate of crystallization. Under these conditions, the solution is saturated with solute and is incapable of dissolving further solute under equilibrium conditions. In fact, the distinction between the solute and solvent is arbitrary as either component can be considered to be the solute or... [Pg.203]

Also, hydrates are more soluble in water-miscible solvents than are the corresponding anhydrous forms. For example, the solubility of caffeine hydrate is lower than that of anhydrous caffeine in water but higher in ethanol. The maximum concentration seen may be due to the solubility of the anhydrous crystalline phase or due to a temporary steady state in which the rate of dissolution of the metastable anhydrous form and the rate of crystallization of the stable hydrate are equal. The decreasing concentration represents crystallization of the stable hydrate from a solution supersaturated with respect to it. If the maximum concentration of the solute in the dissolution experiment corresponds to the solubility, then the initial increase in concentration follows the Noyes-Whitney equation [15]. Van t Hoff plots of log solubility versus the reciprocal of temperature give linear relationships (Fig. 16). [Pg.611]

Why would a manufacturer of polymeric items be interested in the rate of crystallization within a semicrystalline polymer ... [Pg.93]


See other pages where Rate of crystallization is mentioned: [Pg.203]    [Pg.143]    [Pg.350]    [Pg.457]    [Pg.293]    [Pg.293]    [Pg.446]    [Pg.506]    [Pg.19]    [Pg.345]    [Pg.348]    [Pg.542]    [Pg.298]    [Pg.594]    [Pg.56]    [Pg.138]    [Pg.142]    [Pg.191]    [Pg.528]    [Pg.122]    [Pg.408]    [Pg.218]    [Pg.291]    [Pg.344]    [Pg.239]    [Pg.701]    [Pg.263]   
See also in sourсe #XX -- [ Pg.172 ]

See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Crystal rates

Crystallization rates

© 2024 chempedia.info