Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty acids poly

Fatty acids are especially important and ubiquitous lipids. Apart from their use as fuel, they may be used in the synthesis of many other kinds of molecules. A fatty acid is a hydrocarbon chain with a terminal —COOH group. Usually, fatty acids contain between 14 and 25 carbons, 16 and 18 being most common. Unsaturated fatty acids are those that contain double bonds between some carbon atoms. Saturated fatty acids contain only single bonds. Palmitic acid (16) and stearic acid (Cl8) are particularly common saturated fatty acids in humans. Linoleic acid (Cl8), linolenic acid (Cl8) and arachidonic acid (C20) are common polyunsaturated fatty acids ( poly meaning more than one double bond). The number of carbons typically is even, reflecting the fact that fatty acid chains are built up (and broken down) in units of 2 carbon atoms at a time. [Pg.17]

Fatty acids Poly(lactides) PTFE fluorocarbons... [Pg.143]

Alkan, C. San, A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol Energ 82 (2008) 118-124. [Pg.1478]

Domb, A.J. and Maniar, M. (1993a) Absorbable biopolymers derit ed from dimer fatty acids, /. Poly. Set. ... [Pg.165]

The nonionic emulsifiers are rarely used in the emulsion polymerization. This group includes esters of glycerol and fatty acids, products of ethylene oxide addition to alcohols, phenols or fatty acids, poly (vinyl alcohol) and others. [Pg.336]

Chem. Descrip. Fatty acid poly DEA/fatty acid DEA 1 2 Uses Household detergent, corrosion inhibitor for cutting oils, additive for acid cleaners, emulsifier... [Pg.1621]

Mixtures of polymers at surfaces provide the interesting possibility of exploring polymer miscibility in two dimensions. Baglioni and co-workers [17] have shown that polymers having the same orientation at the interface are compatible while those having different orientations are not. Some polymers have their hydrophobic portions parallel to the surface, while others have a perpendicular disposition. The surface orientation effect is also present in mixtures of poly(methyl methacrylate), PMMA, and fatty acids. [Pg.541]

N-Benzylamides are recommended when the corresponding acid is liquid and/or water-soluble so that it cannot itself serve as a derivative. Phe benzylamides derived from the simple fatty acids or their esters are not altogether satisfactory (see Table below) those derived from most hydroxy-acids and from poly basic acids or their esters are formed in good yield and are easily purified. The esters of aromatic acids yield satisfactory derivatives but the method must compete with the equally simple process of hydrolysis and precipitation of the free acid, an obvious derivative when the acid is a solid. The procedure fails with esters of keto, sul phonic, inorganic and some halogenated aliphatic esters. [Pg.394]

Fully modified yams had smooth, all-skin cross sections, a stmcture made up of numerous small crystaUites of cellulose, and filament strengths around 0.4 N/tex (4.5 gf/den). They were generally known as the Super tire yams. Improved Super yams (0.44—0.53 N/tex (5—6 gf/den)) were made by mixing modifiers, and one of the best combiaations was found to be dimethylamine with poly-(oxyethylene) glycol of about 1500 mol wt (25). Ethoxjlated fatty acid amines have now largely replaced dimethylamine because they are easier to handle and cost less. [Pg.349]

Tetraethylene glycol may be used direcdy as a plasticizer or modified by esterification with fatty acids to produce plasticizers (qv). Tetraethylene glycol is used directly to plasticize separation membranes, such as siHcone mbber, poly(vinyl acetate), and ceUulose triacetate. Ceramic materials utilize tetraethylene glycol as plasticizing agents in resistant refractory plastics and molded ceramics. It is also employed to improve the physical properties of cyanoacrylate and polyacrylonitrile adhesives, and is chemically modified to form polyisocyanate, polymethacrylate, and to contain siHcone compounds used for adhesives. [Pg.363]

Three generations of latices as characterized by the type of surfactant used in manufacture have been defined (53). The first generation includes latices made with conventional (/) anionic surfactants like fatty acid soaps, alkyl carboxylates, alkyl sulfates, and alkyl sulfonates (54) (2) nonionic surfactants like poly(ethylene oxide) or poly(vinyl alcohol) used to improve freeze—thaw and shear stabiUty and (J) cationic surfactants like amines, nitriles, and other nitrogen bases, rarely used because of incompatibiUty problems. Portiand cement latex modifiers are one example where cationic surfactants are used. Anionic surfactants yield smaller particles than nonionic surfactants (55). Often a combination of anionic surfactants or anionic and nonionic surfactants are used to provide improved stabiUty. The stabilizing abiUty of anionic fatty acid soaps diminishes at lower pH as the soaps revert to their acids. First-generation latices also suffer from the presence of soap on the polymer particles at the end of the polymerization. Steam and vacuum stripping methods are often used to remove the soap and unreacted monomer from the final product (56). [Pg.25]

Lignites and lignosulfonates can act as o/w emulsifiers, but generally are added for other purposes. Various anionic surfactants, including alkylarylsulfonates and alkylaryl sulfates and poly(ethylene oxide) derivatives of fatty acids, esters, and others, are used. Very Httle oil is added to water-base muds in use offshore for environmental reasons. A nonionic poly(ethylene oxide) derivative of nonylphenol [9016-45-9] is used in calcium-treated muds (126). [Pg.182]

Natural Products. Many natural products, eg, sugars, starches, and cellulose, contain hydroxyl groups that react with propylene oxide. Base-cataly2ed reactions yield propylene glycol monoethers and poly(propylene glycol) ethers (61—64). Reaction with fatty acids results ia a mixture of mono- and diesters (65). Cellulose fibers, eg, cotton (qv), have been treated with propylene oxide (66—68). [Pg.135]

Poly Pross light/dark Disco Inc. 1.20 0.02 60 (chips) fatty acid blends... [Pg.245]

A major pharmaceutical use of poly(oxyethylene) sorbitan fatty acid esters is in the solubilization of the oil-soluble vitamins A and D. In this way, multivitamin preparations can be made which combine both water- and oil-soluble vitamins in a palatable form. [Pg.54]

Emulsions of fatty- and petroleum-based substances, both oils and waxes, of the o/w type are made by using blends of sorbitan fatty esters and their poly(oxyethylene) derivatives. Mixtures of poly(oxyethylene(20)) sorbitan monostearate (Polysorbate 60) and sorbitan monostearate are typical examples of blends used for lotions and creams. Both sorbitan fatty acid esters and their poly(oxyethylene) derivatives are particularly advantageous in cosmetic uses because of their very low skin irritant properties. Sorbitan fatty ester emulsifiers for w/o emulsions of mineral oil are used in hair preparations of both the lotion and cream type. Poly(oxyethylene(20)) sorbitan monolaurate is useflil in shampoo formulations (see Hairpreparations). Poly(oxyethylene) sorbitan surfactants are also used for solubilization of essential oils in the preparation of colognes and after-shave lotions. [Pg.54]

Eatty acid ethoxylates are used extensively in the textile industry as emulsifiers for processing oils, antistatic agents (qv), softeners, and fiber lubricants, and as detergents in scouring operations. They also find appHcation as emulsifiers in cosmetic preparations and pesticide formulations. Eatty acid ethoxylates are manufactured either by alkaH-catalyzed reaction of fatty acids with ethylene oxide or by acid-catalyzed esterification of fatty acids with preformed poly(ethylene glycol). Deodorization steps are commonly incorporated into the manufacturing process. [Pg.250]

LB films of CO-tricosenoic acid, CH2=CH—(CH2)2qCOOH, have been studied as electron photoresists (26—28). A resolution better than 50 nm could be achieved. Diacetylenic fatty acids have been polymerized to yield the corresponding poly (diacetylene) derivatives that have interesting third-order nonlinear optical properties (29). [Pg.533]

A variety of waxy hydrophobic hydrocarbon-based soHd phases are used including fatty acid amides and sulfonamides, hydrocarbon waxes such as montan wax [8002-53-7], and soHd fatty acids and esters. The amides are particularly important commercially. One example is the use of ethylenediamine distearamide [110-30-5] as a component of latex paint and paper pulp blackHquor defoamer (11). Hydrocarbon-based polymers are also used as the soHd components of antifoaming compositions (5) examples include polyethylene [9002-88-4], poly(vinyl chloride) [9002-86-2], and polymeric ion-exchange resins. [Pg.463]

Transesterification has a number of important commercial uses. Methyl esters of fatty acids are produced from fats and oils. Transesterification is also the basis of recycling technology to break up poly(ethylene terephthalate) [25038-59-9] to monomer for reuse (29) (see Recycling, plastics). Because vinyl alcohol does not exist, poly(vinyl alcohol) [9002-89-5] is produced commercially by base-cataly2ed alcoholysis of poly(vinyl acetate) [9003-20-7] (see Vinyl polymers). An industrial example of acidolysis is the reaction of poly(vinyl acetate) with butyric acid to form poly(vinyl butyrate) [24991-31-9]. [Pg.388]

Surface-Active Agents. Polyol (eg, glycerol, sorbitol, sucrose, and propylene glycol) or poly(ethylene oxide) esters of long-chain fatty acids are nonionic surfactants (qv) used in foods, pharmaceuticals, cosmetics, textiles, cleaning compounds, and many other appHcations (103,104). Those that are most widely used are included in Table 3. [Pg.396]

Finally, ion chromatography can be used to determine the a-sulfo fatty acid esters. The chromatographic column is a nonpolar poly sty rene/divinylbenzene column and the ion pair reagent is 0.005 M ammonia. In order to reduce the elution time, acetonitrile is added as a modifier with increasing concentration. This gradient technique makes it possible to separate simultaneously ester sulfonates and disalts by chain length. Determination is achieved by standards with defined chain length [107]. [Pg.493]

The reason for the cholesterol-lowering effect of polyunsaturated fatty acids is still not fully understood. It is clear, however, that one of the mechanisms involved is the up-regulation of LDL receptors by poly-and monounsaturated as compared with saturated fatty acids, causing an increase in the catabolic rate of LDL, the main atherogenic lipoprotein. In addition, saturated fatty acids cause the formation of smaller VLDL particles that contain relatively more cholesterol, and they are utilized by extrahepatic tissues at a slower rate than are larger particles—tendencies that may be regarded as atherogenic. [Pg.227]

By coating poly-a-olefins with a fatty acid wax as a partitioning agent and dispersing it in a long-chain alcohol, a nonagglomerating, nonaqueous suspension can be obtained [918]. [Pg.172]

Anionic emulsifiers, such as alkali salts of fatty acids, can be applied in anionic latices. Are particularly important as wetting and foaming agents in latex technology. Poly(glycol) ethers act as nonionogenic emulsifiers. [Pg.778]


See other pages where Fatty acids poly is mentioned: [Pg.231]    [Pg.45]    [Pg.234]    [Pg.438]    [Pg.351]    [Pg.47]    [Pg.231]    [Pg.45]    [Pg.234]    [Pg.438]    [Pg.351]    [Pg.47]    [Pg.321]    [Pg.363]    [Pg.31]    [Pg.53]    [Pg.54]    [Pg.55]    [Pg.296]    [Pg.47]    [Pg.263]    [Pg.551]    [Pg.261]    [Pg.120]    [Pg.162]    [Pg.62]    [Pg.98]    [Pg.373]   
See also in sourсe #XX -- [ Pg.61 , Pg.66 ]

See also in sourсe #XX -- [ Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 ]




SEARCH



Poly acid

© 2024 chempedia.info