Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal cell surfaces

A rather more specific mechanism of microbial immobilization of metal ions is represented by the accumulation of uranium as an extracellular precipitate of hydrogen uranyl phosphate by a Citrobacter species (83). Staggering amounts of uranium can be precipitated more than 900% of the bacterial dry weight Recent work has shown that even elements that do not readily form insoluble phosphates, such as nickel and neptunium, may be incorporated into the uranyl phosphate crystallites (84). The precipitation is driven by the production of phosphate ions at the cell surface by an external phosphatase. [Pg.36]

Many studies have been undertaken with a view to improving lithium anode performance to obtain a practical cell. This section will describe recent progress in the study of lithium-metal anodes and the cells. Sections 3.2 to 3.7 describe studies on the surface of uncycled lithium and of lithium coupled with electrolytes, methods for measuring the cycling efficiency of lithium, the morphology of deposited lithium, the mechanism of lithium deposition and dissolution, the amount of dead lithium, the improvement of cycling efficiency, and alternatives to the lithium-metal anode. Section 3.8 describes the safety of rechargeable lithium-metal cells. [Pg.340]

We believe that (3) is the main reason for the low cycling efficiency. The thermal stability of lithium-metal cells decreases with cycling [30] and the dead lithium may be the cause of this reduction. This indicates that the cycling efficiency is strongly affected by the morphology of the lithium surface. [Pg.343]

Integrins constitute a large family of a (3 heterodimeric cell surface, transmembrane proteins that interact with a large number of extracellular matrix components through a metal ion-dependent interaction. The term integrin reflects their function in integrating cell adhesion and migration with the cystoskeleton. [Pg.638]

Several factors can influence metal uptake by stream autotrophic biofllms in fluvial systems. These include chemical factors (pH, saUnity, phosphate concentration) which affect metal bioavailabiHty by either altering the speciation of the metal or by complexing it at the biotilm s matrix and cell surfaces [18, 40], and also other biological and physical factors. [Pg.46]

Destructive techniques have been widely applied to determine the concentration of key elements In cells and other biota, but beside being Incapable of use in vivo, they offer no Information on the chemical nature of the element In question. For example, acid digestion of cells which have accumulated various organotln species, and subsequent traditional analysis by atomic absorption (AA) spectroscopy or element-specific spectrofluorlmetry, will produce quantitative data on the amount of tin present, but will reveal nothing about the coordination environment of the metal on the cell surface prior to destruction. [Pg.85]

In this chapter we describe the basic principles involved in the controlled production and modification of two-dimensional protein crystals. These are synthesized in nature as the outermost cell surface layer (S-layer) of prokaryotic organisms and have been successfully applied as basic building blocks in a biomolecular construction kit. Most importantly, the constituent subunits of the S-layer lattices have the capability to recrystallize into iso-porous closed monolayers in suspension, at liquid-surface interfaces, on lipid films, on liposomes, and on solid supports (e.g., silicon wafers, metals, and polymers). The self-assembled monomolecular lattices have been utilized for the immobilization of functional biomolecules in an ordered fashion and for their controlled confinement in defined areas of nanometer dimension. Thus, S-layers fulfill key requirements for the development of new supramolecular materials and enable the design of a broad spectrum of nanoscale devices, as required in molecular nanotechnology, nanobiotechnology, and biomimetics [1-3]. [Pg.333]

A nonuniform distribution of the reactions may arise when the metal s surface is inhomogeneous, particularly when it contains inclusions of other metals. In many cases (e.g., zinc with iron inclusions), the polarization of hydrogen evolution is much lower at the inclusions than at the base metal hence, hydrogen evolution at the inclusions will be faster (Fig. 22.3). Accordingly, the rate of the coupled anodic reaction (dissolution of the base metal) will also be faster. The electrode s OCP will become more positive under these conditions. At such surfaces, the cathodic reaction is concentrated at the inclusions, while the anodic reaction occurs at the base metal. This mechanism is reminiscent of the operation of shorted galvanic couples with spatially separated reactions Metal dissolves from one electrode hydrogen evolves at the other. Hence, such inclusions have been named local cells or microcells. [Pg.382]

Paradoxically, all these significant recent contributions to the theory of the ORR, together with most recent experimental efforts to characterize the ORR at a fuel cell cathode catalyst, have not led at aU to a consensus on either the mechanism of the ORR at Pt catalysts in acid electrolytes or even on how to properly determine this mechanism with available experimental tools. To elucidate the present mismatch of central pieces in the ORR puzzle, one can start from the identification of the slow step in the ORR sequence. With the 02-to-HOOads-to-HOads route appearing from recent DFT calculations to be the likely mechanism for the ORR at a Pt metal catalyst surface in acid electrolyte, the first electron and proton transfer to dioxygen, according to the reaction... [Pg.11]

PEMFC)/direct methanol fuel cell (DMFC) cathode limit the available sites for reduction of molecular oxygen. Alternatively, at the anode of a PEMFC or DMFC, the oxidation of water is necessary to produce hydroxyl or oxygen species that participate in oxidation of strongly bound carbon monoxide species. Taylor and co-workers [Taylor et ah, 2007b] have recently reported on a systematic study that examined the potential dependence of water redox reactions over a series of different metal electrode surfaces. For comparison purposes, we will start with a brief discussion of electronic structure studies of water activity with consideration of UHV model systems. [Pg.106]

In the rhizosphere, microorganisms utilize either organic acids or phytosiderophores to transport iron or produce their own low-molecular-weight metal chelators, called siderophores. There are a wide variety of siderophores in nature and some of them have now been identified and chemically purified (54). Pre.sently, three general mechanisms are recognized for utilization of these compounds by microorganisms. These include a shuttle mechanism in which chelators deliver iron to a reductase on the cell surface, direct uptake of metallated siderophores with destructive hydrolysis of the chelator inside the cell, and direct uptake followed by reductive removal of iron and resecretion of the chelator (for reviews, see Refs. 29 and 54). [Pg.233]

Different metal species vary in their biological reactivity.98 99 For example, the free ionic form of a metal may act by substituting a cofactor for a vital enzyme. Hydroxylated metal ions have been suggested to bind to the cell surface and alter the net charge of the cell to reduce its viability.101 Because different species may have different effects on biological processes, some species may be more toxic than others. There is a paucity of information in the literature regarding the relative toxicity of different metal species. [Pg.417]

Bioremediation of sites that are contaminated with toxic metals is an important issue in environmental restoration. Bacteria have long been known for their ability to Itake up metals from their immediate environment (Borrok and Fein 2004). The efficiency of bacterial cells in concentrating metals is related to their large surface area-to-volume ratio and high surface density of charge. The cell surfaces of all bacteria are negatively... [Pg.71]

Bacterial cell walls contain different types of negatively charged (proton-active) functional groups, such as carboxyl, hydroxyl and phosphoryl that can adsorb metal cations, and retain them by mineral nucleation. Reversed titration studies on live, inactive Shewanella putrefaciens indicate that the pH-buffering properties of these bacteria arise from the equilibrium ionization of three discrete populations of carboxyl (pKa = 5.16 0.04), phosphoryl (oKa = 7.22 0.15), and amine (/ Ka = 10.04 0.67) groups (Haas et al. 2001). These functional groups control the sorption and binding of toxic metals on bacterial cell surfaces. [Pg.74]

The removal of Pb by Brevibacterium sp strain PBZ was markedly enhanced by the presence of glucose (Simine et al. 1998). Desorption of the metal by EDTA restored the binding capacity of the cells. U(VI) could be desorped from the cell surface of B. cereus by citric acid or sodium bicarbonate with the formation of water-soluble complexes although U(VI) was strongly bound on the cell surface of the bacteria. However, uranyl in... [Pg.78]

Bacteria and their composites with soil minerals or organic matter are capable of taking up a wide range and variety of toxic metals in soil environments. Research done over the last decade or so has greatly improved our understanding of the mechanisms on biosorption of metals and bacte-ria-metal-soil component interactions. However, more studies from molecular level are needed in order to enhance the ability of bacteria and their association with soil components to remediate toxic metals-contaminated soils. The focus of future investigations should be on the mechanisms by which metals are sorbed and bound by bacterial cell surfaces and bacteria-soil/mineral composites. In this connection, X-ray absorption spectroscopy (XAS) is a promising technique because it can provide information about... [Pg.92]

As seen in equations (32)-(34), the forward adsorptive flux depends upon the concentration of free cell surface carriers. Unfortunately, there is only limited information in the literature on determinations of carrier concentrations for the uptake of trace metals. In principle, graphical and numerical methods can be used to determine carrier numbers and the equilibrium constant, As, corresponding to the formation of M — Rcen following measurement of [M] and (M —Rceii. For example, a (Scatchard) plot of (M — RCeii /[M] versus (M — RCeii should yield a straight line with a slope equal to the reciprocal of the dissociation constant and abscissa-intercept equal to the total carrier numbers (e.g. [186]). [Pg.476]

The above procedures imply that (1) there is only a single type of site (2) binding occurs only to the transporter site (usually not the case for trace metals), and (3) the internalisation flux is negligible for the equilibration times that are employed [197,198], These conditions are rarely fulfilled for metal transporters. The interpretation of Scatchard plots is especially ambiguous in the presence of several independent sites. On the other hand, in the biomedical literature, where nonspecific adsorption is generally not a problem, values of 104 to 106 carriers per cell (ca. 10-13 to 10 11 carriers cm-2 of cell surface area), with even lower numbers determined for some receptors (e.g. haematopoetic growth factor [199]), are typically reported. [Pg.477]

There is only limited information in the literature on determinations of carrier numbers for the uptake of trace metals. Hudson and Morel [7] and later Sunda and Huntsman [200] argued that to enable Fe uptake, marine diatoms required extremely large numbers of carriers (enough to cover 50% of the cell surface area in some cases). For Pb uptake by Chlorella kesslerii, Slaveykova and Wilkinson [201] have also estimated large carrier numbers of 1.5 x 10 11 mol cm-2 (> 106 carriers per cell) using kinetic EDTA extraction techniques. Finally, using similar extraction kinetics, saturation of Zn... [Pg.477]


See other pages where Metal cell surfaces is mentioned: [Pg.470]    [Pg.470]    [Pg.257]    [Pg.383]    [Pg.269]    [Pg.275]    [Pg.7]    [Pg.10]    [Pg.98]    [Pg.291]    [Pg.419]    [Pg.163]    [Pg.351]    [Pg.216]    [Pg.308]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.88]    [Pg.97]    [Pg.7]    [Pg.181]    [Pg.211]    [Pg.229]    [Pg.362]    [Pg.324]    [Pg.554]    [Pg.312]    [Pg.217]    [Pg.245]    [Pg.342]    [Pg.369]    [Pg.373]   
See also in sourсe #XX -- [ Pg.669 ]




SEARCH



Cell surface

© 2024 chempedia.info